blob: c5756eaca9f2ab803cc45404c6d6b4a8fe10702a [file] [log] [blame] [edit]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2023 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: joydeepb@cs.utexas.edu (Joydeep Biswas)
#ifndef CERES_INTERNAL_CUDA_BUFFER_H_
#define CERES_INTERNAL_CUDA_BUFFER_H_
#include "ceres/context_impl.h"
#include "ceres/internal/config.h"
#ifndef CERES_NO_CUDA
#include <cstddef>
#include <utility>
#include <vector>
#include "absl/log/check.h"
#include "cuda_runtime.h"
namespace ceres::internal {
// An encapsulated buffer to maintain GPU memory, and handle transfers between
// GPU and system memory. It is the responsibility of the user to ensure that
// the appropriate GPU device is selected before each subroutine is called. This
// is particularly important when using multiple GPU devices on different CPU
// threads, since active Cuda devices are determined by the cuda runtime on a
// per-thread basis.
template <typename T>
class CudaBuffer {
public:
explicit CudaBuffer(ContextImpl* context) : context_(context) {}
CudaBuffer(ContextImpl* context, int size) : context_(context) {
Reserve(size);
}
CudaBuffer(CudaBuffer&& other)
: data_(other.data_), size_(other.size_), context_(other.context_) {
other.data_ = nullptr;
other.size_ = 0;
}
CudaBuffer(const CudaBuffer&) = delete;
CudaBuffer& operator=(const CudaBuffer&) = delete;
~CudaBuffer() {
if (data_ != nullptr) {
CHECK_EQ(cudaFree(data_), cudaSuccess);
}
}
// Grow the GPU memory buffer if needed to accommodate data of the specified
// size
void Reserve(const size_t size) {
if (size > size_) {
if (data_ != nullptr) {
CHECK_EQ(cudaFree(data_), cudaSuccess);
}
CHECK_EQ(cudaMalloc(&data_, size * sizeof(T)), cudaSuccess)
<< "Failed to allocate " << size * sizeof(T)
<< " bytes of GPU memory";
size_ = size;
}
}
// Perform an asynchronous copy from CPU memory to GPU memory managed by this
// CudaBuffer instance using the stream provided.
void CopyFromCpu(const T* data, const size_t size) {
Reserve(size);
CHECK_EQ(cudaMemcpyAsync(data_,
data,
size * sizeof(T),
cudaMemcpyHostToDevice,
context_->DefaultStream()),
cudaSuccess);
}
// Perform an asynchronous copy from a vector in CPU memory to GPU memory
// managed by this CudaBuffer instance.
void CopyFromCpuVector(const std::vector<T>& data) {
Reserve(data.size());
CHECK_EQ(cudaMemcpyAsync(data_,
data.data(),
data.size() * sizeof(T),
cudaMemcpyHostToDevice,
context_->DefaultStream()),
cudaSuccess);
}
// Perform an asynchronous copy from another GPU memory array to the GPU
// memory managed by this CudaBuffer instance using the stream provided.
void CopyFromGPUArray(const T* data, const size_t size) {
Reserve(size);
CHECK_EQ(cudaMemcpyAsync(data_,
data,
size * sizeof(T),
cudaMemcpyDeviceToDevice,
context_->DefaultStream()),
cudaSuccess);
}
// Copy data from the GPU memory managed by this CudaBuffer instance to CPU
// memory. It is the caller's responsibility to ensure that the CPU memory
// pointer is valid, i.e. it is not null, and that it points to memory of
// at least this->size() size. This method ensures all previously dispatched
// GPU operations on the specified stream have completed before copying the
// data to CPU memory.
void CopyToCpu(T* data, const size_t size) const {
CHECK(data_ != nullptr);
CHECK_EQ(cudaMemcpyAsync(data,
data_,
size * sizeof(T),
cudaMemcpyDeviceToHost,
context_->DefaultStream()),
cudaSuccess);
CHECK_EQ(cudaStreamSynchronize(context_->DefaultStream()), cudaSuccess);
}
// Copy N items from another GPU memory array to the GPU memory managed by
// this CudaBuffer instance, growing this buffer's size if needed. This copy
// is asynchronous, and operates on the stream provided.
void CopyNItemsFrom(int n, const CudaBuffer<T>& other) {
Reserve(n);
CHECK(other.data_ != nullptr);
CHECK(data_ != nullptr);
CHECK_EQ(cudaMemcpyAsync(data_,
other.data_,
size_ * sizeof(T),
cudaMemcpyDeviceToDevice,
context_->DefaultStream()),
cudaSuccess);
}
// Return a pointer to the GPU memory managed by this CudaBuffer instance.
T* data() { return data_; }
const T* data() const { return data_; }
// Return the number of items of type T that can fit in the GPU memory
// allocated so far by this CudaBuffer instance.
size_t size() const { return size_; }
private:
T* data_ = nullptr;
size_t size_ = 0;
ContextImpl* context_ = nullptr;
};
// This class wraps host memory region allocated via cudaMallocHost. Such memory
// region is page-locked, hence enabling direct transfer to/from device,
// avoiding implicit buffering under the hood of CUDA API.
template <typename T>
class CudaPinnedHostBuffer {
public:
CudaPinnedHostBuffer() noexcept = default;
CudaPinnedHostBuffer(int size) { Reserve(size); }
CudaPinnedHostBuffer(CudaPinnedHostBuffer&& other) noexcept
: data_(std::exchange(other.data_, nullptr)),
size_(std::exchange(other.size_, 0)) {}
CudaPinnedHostBuffer(const CudaPinnedHostBuffer&) = delete;
CudaPinnedHostBuffer& operator=(const CudaPinnedHostBuffer&) = delete;
CudaPinnedHostBuffer& operator=(CudaPinnedHostBuffer&& other) noexcept {
Free();
data_ = std::exchange(other.data_, nullptr);
size_ = std::exchange(other.size_, 0);
return *this;
}
~CudaPinnedHostBuffer() { Free(); }
void Reserve(const std::size_t size) {
if (size > size_) {
Free();
CHECK_EQ(cudaMallocHost(&data_, size * sizeof(T)), cudaSuccess)
<< "Failed to allocate " << size * sizeof(T)
<< " bytes of pinned host memory";
size_ = size;
}
}
T* data() noexcept { return data_; }
const T* data() const noexcept { return data_; }
std::size_t size() const noexcept { return size_; }
private:
void Free() {
if (data_ != nullptr) {
CHECK_EQ(cudaFreeHost(data_), cudaSuccess);
data_ = nullptr;
size_ = 0;
}
}
T* data_ = nullptr;
std::size_t size_ = 0;
};
} // namespace ceres::internal
#endif // CERES_NO_CUDA
#endif // CERES_INTERNAL_CUDA_BUFFER_H_