Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Keir Mierle | 7492b0d | 2015-03-17 22:30:16 -0700 | [diff] [blame] | 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: thadh@gmail.com (Thad Hughes) |
| 30 | // mierle@gmail.com (Keir Mierle) |
| 31 | // sameeragarwal@google.com (Sameer Agarwal) |
| 32 | |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 33 | #include <cstddef> |
| 34 | |
Sameer Agarwal | a427c87 | 2013-06-24 17:50:56 -0700 | [diff] [blame] | 35 | #include "ceres/dynamic_autodiff_cost_function.h" |
| 36 | #include "ceres/internal/scoped_ptr.h" |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 37 | #include "gtest/gtest.h" |
| 38 | |
| 39 | namespace ceres { |
| 40 | namespace internal { |
| 41 | |
Sameer Agarwal | bcc865f | 2014-12-17 07:35:09 -0800 | [diff] [blame] | 42 | using std::vector; |
| 43 | |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 44 | // Takes 2 parameter blocks: |
| 45 | // parameters[0] is size 10. |
| 46 | // parameters[1] is size 5. |
| 47 | // Emits 21 residuals: |
| 48 | // A: i - parameters[0][i], for i in [0,10) -- this is 10 residuals |
| 49 | // B: parameters[0][i] - i, for i in [0,10) -- this is another 10. |
| 50 | // C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i]) |
| 51 | class MyCostFunctor { |
| 52 | public: |
| 53 | template <typename T> |
| 54 | bool operator()(T const* const* parameters, T* residuals) const { |
| 55 | const T* params0 = parameters[0]; |
| 56 | int r = 0; |
| 57 | for (int i = 0; i < 10; ++i) { |
| 58 | residuals[r++] = T(i) - params0[i]; |
| 59 | residuals[r++] = params0[i] - T(i); |
| 60 | } |
| 61 | |
| 62 | T c_residual(0.0); |
| 63 | for (int i = 0; i < 10; ++i) { |
| 64 | c_residual += pow(params0[i], 2) - T(8) * params0[i]; |
| 65 | } |
| 66 | |
| 67 | const T* params1 = parameters[1]; |
| 68 | for (int i = 0; i < 5; ++i) { |
| 69 | c_residual += params1[i]; |
| 70 | } |
| 71 | residuals[r++] = c_residual; |
| 72 | return true; |
| 73 | } |
| 74 | }; |
| 75 | |
| 76 | TEST(DynamicAutodiffCostFunctionTest, TestResiduals) { |
| 77 | vector<double> param_block_0(10, 0.0); |
| 78 | vector<double> param_block_1(5, 0.0); |
| 79 | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| 80 | new MyCostFunctor()); |
| 81 | cost_function.AddParameterBlock(param_block_0.size()); |
| 82 | cost_function.AddParameterBlock(param_block_1.size()); |
| 83 | cost_function.SetNumResiduals(21); |
| 84 | |
| 85 | // Test residual computation. |
| 86 | vector<double> residuals(21, -100000); |
| 87 | vector<double*> parameter_blocks(2); |
| 88 | parameter_blocks[0] = ¶m_block_0[0]; |
| 89 | parameter_blocks[1] = ¶m_block_1[0]; |
| 90 | EXPECT_TRUE(cost_function.Evaluate(¶meter_blocks[0], |
| 91 | residuals.data(), |
| 92 | NULL)); |
| 93 | for (int r = 0; r < 10; ++r) { |
| 94 | EXPECT_EQ(1.0 * r, residuals.at(r * 2)); |
| 95 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1)); |
| 96 | } |
| 97 | EXPECT_EQ(0, residuals.at(20)); |
| 98 | } |
| 99 | |
| 100 | TEST(DynamicAutodiffCostFunctionTest, TestJacobian) { |
| 101 | // Test the residual counting. |
| 102 | vector<double> param_block_0(10, 0.0); |
| 103 | for (int i = 0; i < 10; ++i) { |
| 104 | param_block_0[i] = 2 * i; |
| 105 | } |
| 106 | vector<double> param_block_1(5, 0.0); |
| 107 | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| 108 | new MyCostFunctor()); |
| 109 | cost_function.AddParameterBlock(param_block_0.size()); |
| 110 | cost_function.AddParameterBlock(param_block_1.size()); |
| 111 | cost_function.SetNumResiduals(21); |
| 112 | |
| 113 | // Prepare the residuals. |
| 114 | vector<double> residuals(21, -100000); |
| 115 | |
| 116 | // Prepare the parameters. |
| 117 | vector<double*> parameter_blocks(2); |
| 118 | parameter_blocks[0] = ¶m_block_0[0]; |
| 119 | parameter_blocks[1] = ¶m_block_1[0]; |
| 120 | |
| 121 | // Prepare the jacobian. |
| 122 | vector<vector<double> > jacobian_vect(2); |
| 123 | jacobian_vect[0].resize(21 * 10, -100000); |
| 124 | jacobian_vect[1].resize(21 * 5, -100000); |
| 125 | vector<double*> jacobian; |
| 126 | jacobian.push_back(jacobian_vect[0].data()); |
| 127 | jacobian.push_back(jacobian_vect[1].data()); |
| 128 | |
| 129 | // Test jacobian computation. |
| 130 | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| 131 | residuals.data(), |
| 132 | jacobian.data())); |
| 133 | |
| 134 | for (int r = 0; r < 10; ++r) { |
| 135 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| 136 | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| 137 | } |
| 138 | EXPECT_EQ(420, residuals.at(20)); |
| 139 | for (int p = 0; p < 10; ++p) { |
| 140 | // Check "A" Jacobian. |
| 141 | EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]); |
| 142 | // Check "B" Jacobian. |
| 143 | EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]); |
| 144 | jacobian_vect[0][2*p * 10 + p] = 0.0; |
| 145 | jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; |
| 146 | } |
| 147 | |
| 148 | // Check "C" Jacobian for first parameter block. |
| 149 | for (int p = 0; p < 10; ++p) { |
| 150 | EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); |
| 151 | jacobian_vect[0][20 * 10 + p] = 0.0; |
| 152 | } |
| 153 | for (int i = 0; i < jacobian_vect[0].size(); ++i) { |
| 154 | EXPECT_EQ(0.0, jacobian_vect[0][i]); |
| 155 | } |
| 156 | |
| 157 | // Check "C" Jacobian for second parameter block. |
| 158 | for (int p = 0; p < 5; ++p) { |
| 159 | EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); |
| 160 | jacobian_vect[1][20 * 5 + p] = 0.0; |
| 161 | } |
| 162 | for (int i = 0; i < jacobian_vect[1].size(); ++i) { |
| 163 | EXPECT_EQ(0.0, jacobian_vect[1][i]); |
| 164 | } |
| 165 | } |
| 166 | |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 167 | TEST(DynamicAutodiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) { |
| 168 | // Test the residual counting. |
| 169 | vector<double> param_block_0(10, 0.0); |
| 170 | for (int i = 0; i < 10; ++i) { |
| 171 | param_block_0[i] = 2 * i; |
| 172 | } |
| 173 | vector<double> param_block_1(5, 0.0); |
| 174 | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| 175 | new MyCostFunctor()); |
| 176 | cost_function.AddParameterBlock(param_block_0.size()); |
| 177 | cost_function.AddParameterBlock(param_block_1.size()); |
| 178 | cost_function.SetNumResiduals(21); |
| 179 | |
| 180 | // Prepare the residuals. |
| 181 | vector<double> residuals(21, -100000); |
| 182 | |
| 183 | // Prepare the parameters. |
| 184 | vector<double*> parameter_blocks(2); |
| 185 | parameter_blocks[0] = ¶m_block_0[0]; |
| 186 | parameter_blocks[1] = ¶m_block_1[0]; |
| 187 | |
| 188 | // Prepare the jacobian. |
| 189 | vector<vector<double> > jacobian_vect(2); |
| 190 | jacobian_vect[0].resize(21 * 10, -100000); |
| 191 | jacobian_vect[1].resize(21 * 5, -100000); |
| 192 | vector<double*> jacobian; |
| 193 | jacobian.push_back(NULL); |
| 194 | jacobian.push_back(jacobian_vect[1].data()); |
| 195 | |
| 196 | // Test jacobian computation. |
| 197 | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| 198 | residuals.data(), |
| 199 | jacobian.data())); |
| 200 | |
| 201 | for (int r = 0; r < 10; ++r) { |
| 202 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| 203 | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| 204 | } |
| 205 | EXPECT_EQ(420, residuals.at(20)); |
| 206 | |
| 207 | // Check "C" Jacobian for second parameter block. |
| 208 | for (int p = 0; p < 5; ++p) { |
| 209 | EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); |
| 210 | jacobian_vect[1][20 * 5 + p] = 0.0; |
| 211 | } |
| 212 | for (int i = 0; i < jacobian_vect[1].size(); ++i) { |
| 213 | EXPECT_EQ(0.0, jacobian_vect[1][i]); |
| 214 | } |
| 215 | } |
| 216 | |
Sameer Agarwal | bcc865f | 2014-12-17 07:35:09 -0800 | [diff] [blame] | 217 | TEST(DynamicAutodiffCostFunctionTest, JacobianWithSecondParameterBlockConstant) { // NOLINT |
Sameer Agarwal | 974513a | 2013-02-12 14:22:40 -0800 | [diff] [blame] | 218 | // Test the residual counting. |
| 219 | vector<double> param_block_0(10, 0.0); |
| 220 | for (int i = 0; i < 10; ++i) { |
| 221 | param_block_0[i] = 2 * i; |
| 222 | } |
| 223 | vector<double> param_block_1(5, 0.0); |
| 224 | DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| 225 | new MyCostFunctor()); |
| 226 | cost_function.AddParameterBlock(param_block_0.size()); |
| 227 | cost_function.AddParameterBlock(param_block_1.size()); |
| 228 | cost_function.SetNumResiduals(21); |
| 229 | |
| 230 | // Prepare the residuals. |
| 231 | vector<double> residuals(21, -100000); |
| 232 | |
| 233 | // Prepare the parameters. |
| 234 | vector<double*> parameter_blocks(2); |
| 235 | parameter_blocks[0] = ¶m_block_0[0]; |
| 236 | parameter_blocks[1] = ¶m_block_1[0]; |
| 237 | |
| 238 | // Prepare the jacobian. |
| 239 | vector<vector<double> > jacobian_vect(2); |
| 240 | jacobian_vect[0].resize(21 * 10, -100000); |
| 241 | jacobian_vect[1].resize(21 * 5, -100000); |
| 242 | vector<double*> jacobian; |
| 243 | jacobian.push_back(jacobian_vect[0].data()); |
| 244 | jacobian.push_back(NULL); |
| 245 | |
| 246 | // Test jacobian computation. |
| 247 | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| 248 | residuals.data(), |
| 249 | jacobian.data())); |
| 250 | |
| 251 | for (int r = 0; r < 10; ++r) { |
| 252 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| 253 | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| 254 | } |
| 255 | EXPECT_EQ(420, residuals.at(20)); |
| 256 | for (int p = 0; p < 10; ++p) { |
| 257 | // Check "A" Jacobian. |
| 258 | EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]); |
| 259 | // Check "B" Jacobian. |
| 260 | EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]); |
| 261 | jacobian_vect[0][2*p * 10 + p] = 0.0; |
| 262 | jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; |
| 263 | } |
| 264 | |
| 265 | // Check "C" Jacobian for first parameter block. |
| 266 | for (int p = 0; p < 10; ++p) { |
| 267 | EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); |
| 268 | jacobian_vect[0][20 * 10 + p] = 0.0; |
| 269 | } |
| 270 | for (int i = 0; i < jacobian_vect[0].size(); ++i) { |
| 271 | EXPECT_EQ(0.0, jacobian_vect[0][i]); |
| 272 | } |
| 273 | } |
| 274 | |
Richard Stebbing | 6dd1856 | 2013-06-17 07:27:26 +0100 | [diff] [blame] | 275 | // Takes 3 parameter blocks: |
| 276 | // parameters[0] (x) is size 1. |
| 277 | // parameters[1] (y) is size 2. |
| 278 | // parameters[2] (z) is size 3. |
| 279 | // Emits 7 residuals: |
| 280 | // A: x[0] (= sum_x) |
| 281 | // B: y[0] + 2.0 * y[1] (= sum_y) |
| 282 | // C: z[0] + 3.0 * z[1] + 6.0 * z[2] (= sum_z) |
| 283 | // D: sum_x * sum_y |
| 284 | // E: sum_y * sum_z |
| 285 | // F: sum_x * sum_z |
| 286 | // G: sum_x * sum_y * sum_z |
| 287 | class MyThreeParameterCostFunctor { |
| 288 | public: |
| 289 | template <typename T> |
| 290 | bool operator()(T const* const* parameters, T* residuals) const { |
| 291 | const T* x = parameters[0]; |
| 292 | const T* y = parameters[1]; |
| 293 | const T* z = parameters[2]; |
| 294 | |
| 295 | T sum_x = x[0]; |
| 296 | T sum_y = y[0] + 2.0 * y[1]; |
| 297 | T sum_z = z[0] + 3.0 * z[1] + 6.0 * z[2]; |
| 298 | |
| 299 | residuals[0] = sum_x; |
| 300 | residuals[1] = sum_y; |
| 301 | residuals[2] = sum_z; |
| 302 | residuals[3] = sum_x * sum_y; |
| 303 | residuals[4] = sum_y * sum_z; |
| 304 | residuals[5] = sum_x * sum_z; |
| 305 | residuals[6] = sum_x * sum_y * sum_z; |
| 306 | return true; |
| 307 | } |
| 308 | }; |
| 309 | |
| 310 | class ThreeParameterCostFunctorTest : public ::testing::Test { |
| 311 | protected: |
| 312 | virtual void SetUp() { |
| 313 | // Prepare the parameters. |
| 314 | x_.resize(1); |
| 315 | x_[0] = 0.0; |
| 316 | |
| 317 | y_.resize(2); |
| 318 | y_[0] = 1.0; |
| 319 | y_[1] = 3.0; |
| 320 | |
| 321 | z_.resize(3); |
| 322 | z_[0] = 2.0; |
| 323 | z_[1] = 4.0; |
| 324 | z_[2] = 6.0; |
| 325 | |
| 326 | parameter_blocks_.resize(3); |
| 327 | parameter_blocks_[0] = &x_[0]; |
| 328 | parameter_blocks_[1] = &y_[0]; |
| 329 | parameter_blocks_[2] = &z_[0]; |
| 330 | |
| 331 | // Prepare the cost function. |
| 332 | typedef DynamicAutoDiffCostFunction<MyThreeParameterCostFunctor, 3> |
| 333 | DynamicMyThreeParameterCostFunction; |
| 334 | DynamicMyThreeParameterCostFunction * cost_function = |
| 335 | new DynamicMyThreeParameterCostFunction( |
| 336 | new MyThreeParameterCostFunctor()); |
| 337 | cost_function->AddParameterBlock(1); |
| 338 | cost_function->AddParameterBlock(2); |
| 339 | cost_function->AddParameterBlock(3); |
| 340 | cost_function->SetNumResiduals(7); |
| 341 | |
| 342 | cost_function_.reset(cost_function); |
| 343 | |
| 344 | // Setup jacobian data. |
| 345 | jacobian_vect_.resize(3); |
| 346 | jacobian_vect_[0].resize(7 * x_.size(), -100000); |
| 347 | jacobian_vect_[1].resize(7 * y_.size(), -100000); |
| 348 | jacobian_vect_[2].resize(7 * z_.size(), -100000); |
| 349 | |
| 350 | // Prepare the expected residuals. |
| 351 | const double sum_x = x_[0]; |
| 352 | const double sum_y = y_[0] + 2.0 * y_[1]; |
| 353 | const double sum_z = z_[0] + 3.0 * z_[1] + 6.0 * z_[2]; |
| 354 | |
| 355 | expected_residuals_.resize(7); |
| 356 | expected_residuals_[0] = sum_x; |
| 357 | expected_residuals_[1] = sum_y; |
| 358 | expected_residuals_[2] = sum_z; |
| 359 | expected_residuals_[3] = sum_x * sum_y; |
| 360 | expected_residuals_[4] = sum_y * sum_z; |
| 361 | expected_residuals_[5] = sum_x * sum_z; |
| 362 | expected_residuals_[6] = sum_x * sum_y * sum_z; |
| 363 | |
| 364 | // Prepare the expected jacobian entries. |
| 365 | expected_jacobian_x_.resize(7); |
| 366 | expected_jacobian_x_[0] = 1.0; |
| 367 | expected_jacobian_x_[1] = 0.0; |
| 368 | expected_jacobian_x_[2] = 0.0; |
| 369 | expected_jacobian_x_[3] = sum_y; |
| 370 | expected_jacobian_x_[4] = 0.0; |
| 371 | expected_jacobian_x_[5] = sum_z; |
| 372 | expected_jacobian_x_[6] = sum_y * sum_z; |
| 373 | |
| 374 | expected_jacobian_y_.resize(14); |
| 375 | expected_jacobian_y_[0] = 0.0; |
| 376 | expected_jacobian_y_[1] = 0.0; |
| 377 | expected_jacobian_y_[2] = 1.0; |
| 378 | expected_jacobian_y_[3] = 2.0; |
| 379 | expected_jacobian_y_[4] = 0.0; |
| 380 | expected_jacobian_y_[5] = 0.0; |
| 381 | expected_jacobian_y_[6] = sum_x; |
| 382 | expected_jacobian_y_[7] = 2.0 * sum_x; |
| 383 | expected_jacobian_y_[8] = sum_z; |
| 384 | expected_jacobian_y_[9] = 2.0 * sum_z; |
| 385 | expected_jacobian_y_[10] = 0.0; |
| 386 | expected_jacobian_y_[11] = 0.0; |
| 387 | expected_jacobian_y_[12] = sum_x * sum_z; |
| 388 | expected_jacobian_y_[13] = 2.0 * sum_x * sum_z; |
| 389 | |
| 390 | expected_jacobian_z_.resize(21); |
| 391 | expected_jacobian_z_[0] = 0.0; |
| 392 | expected_jacobian_z_[1] = 0.0; |
| 393 | expected_jacobian_z_[2] = 0.0; |
| 394 | expected_jacobian_z_[3] = 0.0; |
| 395 | expected_jacobian_z_[4] = 0.0; |
| 396 | expected_jacobian_z_[5] = 0.0; |
| 397 | expected_jacobian_z_[6] = 1.0; |
| 398 | expected_jacobian_z_[7] = 3.0; |
| 399 | expected_jacobian_z_[8] = 6.0; |
| 400 | expected_jacobian_z_[9] = 0.0; |
| 401 | expected_jacobian_z_[10] = 0.0; |
| 402 | expected_jacobian_z_[11] = 0.0; |
| 403 | expected_jacobian_z_[12] = sum_y; |
| 404 | expected_jacobian_z_[13] = 3.0 * sum_y; |
| 405 | expected_jacobian_z_[14] = 6.0 * sum_y; |
| 406 | expected_jacobian_z_[15] = sum_x; |
| 407 | expected_jacobian_z_[16] = 3.0 * sum_x; |
| 408 | expected_jacobian_z_[17] = 6.0 * sum_x; |
| 409 | expected_jacobian_z_[18] = sum_x * sum_y; |
| 410 | expected_jacobian_z_[19] = 3.0 * sum_x * sum_y; |
| 411 | expected_jacobian_z_[20] = 6.0 * sum_x * sum_y; |
| 412 | } |
| 413 | |
| 414 | protected: |
| 415 | vector<double> x_; |
| 416 | vector<double> y_; |
| 417 | vector<double> z_; |
| 418 | |
| 419 | vector<double*> parameter_blocks_; |
| 420 | |
| 421 | scoped_ptr<CostFunction> cost_function_; |
| 422 | |
| 423 | vector<vector<double> > jacobian_vect_; |
| 424 | |
| 425 | vector<double> expected_residuals_; |
| 426 | |
| 427 | vector<double> expected_jacobian_x_; |
| 428 | vector<double> expected_jacobian_y_; |
| 429 | vector<double> expected_jacobian_z_; |
| 430 | }; |
| 431 | |
| 432 | TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterResiduals) { |
| 433 | vector<double> residuals(7, -100000); |
| 434 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 435 | residuals.data(), |
| 436 | NULL)); |
| 437 | for (int i = 0; i < 7; ++i) { |
| 438 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterJacobian) { |
| 443 | vector<double> residuals(7, -100000); |
| 444 | |
| 445 | vector<double*> jacobian; |
| 446 | jacobian.push_back(jacobian_vect_[0].data()); |
| 447 | jacobian.push_back(jacobian_vect_[1].data()); |
| 448 | jacobian.push_back(jacobian_vect_[2].data()); |
| 449 | |
| 450 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 451 | residuals.data(), |
| 452 | jacobian.data())); |
| 453 | |
| 454 | for (int i = 0; i < 7; ++i) { |
| 455 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 456 | } |
| 457 | |
| 458 | for (int i = 0; i < 7; ++i) { |
| 459 | EXPECT_EQ(expected_jacobian_x_[i], jacobian[0][i]); |
| 460 | } |
| 461 | |
| 462 | for (int i = 0; i < 14; ++i) { |
| 463 | EXPECT_EQ(expected_jacobian_y_[i], jacobian[1][i]); |
| 464 | } |
| 465 | |
| 466 | for (int i = 0; i < 21; ++i) { |
| 467 | EXPECT_EQ(expected_jacobian_z_[i], jacobian[2][i]); |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | TEST_F(ThreeParameterCostFunctorTest, |
| 472 | ThreeParameterJacobianWithFirstAndLastParameterBlockConstant) { |
| 473 | vector<double> residuals(7, -100000); |
| 474 | |
| 475 | vector<double*> jacobian; |
| 476 | jacobian.push_back(NULL); |
| 477 | jacobian.push_back(jacobian_vect_[1].data()); |
| 478 | jacobian.push_back(NULL); |
| 479 | |
| 480 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 481 | residuals.data(), |
| 482 | jacobian.data())); |
| 483 | |
| 484 | for (int i = 0; i < 7; ++i) { |
| 485 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 486 | } |
| 487 | |
| 488 | for (int i = 0; i < 14; ++i) { |
| 489 | EXPECT_EQ(expected_jacobian_y_[i], jacobian[1][i]); |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | TEST_F(ThreeParameterCostFunctorTest, |
| 494 | ThreeParameterJacobianWithSecondParameterBlockConstant) { |
| 495 | vector<double> residuals(7, -100000); |
| 496 | |
| 497 | vector<double*> jacobian; |
| 498 | jacobian.push_back(jacobian_vect_[0].data()); |
| 499 | jacobian.push_back(NULL); |
| 500 | jacobian.push_back(jacobian_vect_[2].data()); |
| 501 | |
| 502 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 503 | residuals.data(), |
| 504 | jacobian.data())); |
| 505 | |
| 506 | for (int i = 0; i < 7; ++i) { |
| 507 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 508 | } |
| 509 | |
| 510 | for (int i = 0; i < 7; ++i) { |
| 511 | EXPECT_EQ(expected_jacobian_x_[i], jacobian[0][i]); |
| 512 | } |
| 513 | |
| 514 | for (int i = 0; i < 21; ++i) { |
| 515 | EXPECT_EQ(expected_jacobian_z_[i], jacobian[2][i]); |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | // Takes 6 parameter blocks all of size 1: |
| 520 | // x0, y0, y1, z0, z1, z2 |
| 521 | // Same 7 residuals as MyThreeParameterCostFunctor. |
| 522 | // Naming convention for tests is (V)ariable and (C)onstant. |
| 523 | class MySixParameterCostFunctor { |
| 524 | public: |
| 525 | template <typename T> |
| 526 | bool operator()(T const* const* parameters, T* residuals) const { |
| 527 | const T* x0 = parameters[0]; |
| 528 | const T* y0 = parameters[1]; |
| 529 | const T* y1 = parameters[2]; |
| 530 | const T* z0 = parameters[3]; |
| 531 | const T* z1 = parameters[4]; |
| 532 | const T* z2 = parameters[5]; |
| 533 | |
| 534 | T sum_x = x0[0]; |
| 535 | T sum_y = y0[0] + 2.0 * y1[0]; |
| 536 | T sum_z = z0[0] + 3.0 * z1[0] + 6.0 * z2[0]; |
| 537 | |
| 538 | residuals[0] = sum_x; |
| 539 | residuals[1] = sum_y; |
| 540 | residuals[2] = sum_z; |
| 541 | residuals[3] = sum_x * sum_y; |
| 542 | residuals[4] = sum_y * sum_z; |
| 543 | residuals[5] = sum_x * sum_z; |
| 544 | residuals[6] = sum_x * sum_y * sum_z; |
| 545 | return true; |
| 546 | } |
| 547 | }; |
| 548 | |
| 549 | class SixParameterCostFunctorTest : public ::testing::Test { |
| 550 | protected: |
| 551 | virtual void SetUp() { |
| 552 | // Prepare the parameters. |
| 553 | x0_ = 0.0; |
| 554 | y0_ = 1.0; |
| 555 | y1_ = 3.0; |
| 556 | z0_ = 2.0; |
| 557 | z1_ = 4.0; |
| 558 | z2_ = 6.0; |
| 559 | |
| 560 | parameter_blocks_.resize(6); |
| 561 | parameter_blocks_[0] = &x0_; |
| 562 | parameter_blocks_[1] = &y0_; |
| 563 | parameter_blocks_[2] = &y1_; |
| 564 | parameter_blocks_[3] = &z0_; |
| 565 | parameter_blocks_[4] = &z1_; |
| 566 | parameter_blocks_[5] = &z2_; |
| 567 | |
| 568 | // Prepare the cost function. |
| 569 | typedef DynamicAutoDiffCostFunction<MySixParameterCostFunctor, 3> |
| 570 | DynamicMySixParameterCostFunction; |
| 571 | DynamicMySixParameterCostFunction * cost_function = |
| 572 | new DynamicMySixParameterCostFunction( |
| 573 | new MySixParameterCostFunctor()); |
| 574 | for (int i = 0; i < 6; ++i) { |
| 575 | cost_function->AddParameterBlock(1); |
| 576 | } |
| 577 | cost_function->SetNumResiduals(7); |
| 578 | |
| 579 | cost_function_.reset(cost_function); |
| 580 | |
| 581 | // Setup jacobian data. |
| 582 | jacobian_vect_.resize(6); |
| 583 | for (int i = 0; i < 6; ++i) { |
| 584 | jacobian_vect_[i].resize(7, -100000); |
| 585 | } |
| 586 | |
| 587 | // Prepare the expected residuals. |
| 588 | const double sum_x = x0_; |
| 589 | const double sum_y = y0_ + 2.0 * y1_; |
| 590 | const double sum_z = z0_ + 3.0 * z1_ + 6.0 * z2_; |
| 591 | |
| 592 | expected_residuals_.resize(7); |
| 593 | expected_residuals_[0] = sum_x; |
| 594 | expected_residuals_[1] = sum_y; |
| 595 | expected_residuals_[2] = sum_z; |
| 596 | expected_residuals_[3] = sum_x * sum_y; |
| 597 | expected_residuals_[4] = sum_y * sum_z; |
| 598 | expected_residuals_[5] = sum_x * sum_z; |
| 599 | expected_residuals_[6] = sum_x * sum_y * sum_z; |
| 600 | |
| 601 | // Prepare the expected jacobian entries. |
| 602 | expected_jacobians_.resize(6); |
| 603 | expected_jacobians_[0].resize(7); |
| 604 | expected_jacobians_[0][0] = 1.0; |
| 605 | expected_jacobians_[0][1] = 0.0; |
| 606 | expected_jacobians_[0][2] = 0.0; |
| 607 | expected_jacobians_[0][3] = sum_y; |
| 608 | expected_jacobians_[0][4] = 0.0; |
| 609 | expected_jacobians_[0][5] = sum_z; |
| 610 | expected_jacobians_[0][6] = sum_y * sum_z; |
| 611 | |
| 612 | expected_jacobians_[1].resize(7); |
| 613 | expected_jacobians_[1][0] = 0.0; |
| 614 | expected_jacobians_[1][1] = 1.0; |
| 615 | expected_jacobians_[1][2] = 0.0; |
| 616 | expected_jacobians_[1][3] = sum_x; |
| 617 | expected_jacobians_[1][4] = sum_z; |
| 618 | expected_jacobians_[1][5] = 0.0; |
| 619 | expected_jacobians_[1][6] = sum_x * sum_z; |
| 620 | |
| 621 | expected_jacobians_[2].resize(7); |
| 622 | expected_jacobians_[2][0] = 0.0; |
| 623 | expected_jacobians_[2][1] = 2.0; |
| 624 | expected_jacobians_[2][2] = 0.0; |
| 625 | expected_jacobians_[2][3] = 2.0 * sum_x; |
| 626 | expected_jacobians_[2][4] = 2.0 * sum_z; |
| 627 | expected_jacobians_[2][5] = 0.0; |
| 628 | expected_jacobians_[2][6] = 2.0 * sum_x * sum_z; |
| 629 | |
| 630 | expected_jacobians_[3].resize(7); |
| 631 | expected_jacobians_[3][0] = 0.0; |
| 632 | expected_jacobians_[3][1] = 0.0; |
| 633 | expected_jacobians_[3][2] = 1.0; |
| 634 | expected_jacobians_[3][3] = 0.0; |
| 635 | expected_jacobians_[3][4] = sum_y; |
| 636 | expected_jacobians_[3][5] = sum_x; |
| 637 | expected_jacobians_[3][6] = sum_x * sum_y; |
| 638 | |
| 639 | expected_jacobians_[4].resize(7); |
| 640 | expected_jacobians_[4][0] = 0.0; |
| 641 | expected_jacobians_[4][1] = 0.0; |
| 642 | expected_jacobians_[4][2] = 3.0; |
| 643 | expected_jacobians_[4][3] = 0.0; |
| 644 | expected_jacobians_[4][4] = 3.0 * sum_y; |
| 645 | expected_jacobians_[4][5] = 3.0 * sum_x; |
| 646 | expected_jacobians_[4][6] = 3.0 * sum_x * sum_y; |
| 647 | |
| 648 | expected_jacobians_[5].resize(7); |
| 649 | expected_jacobians_[5][0] = 0.0; |
| 650 | expected_jacobians_[5][1] = 0.0; |
| 651 | expected_jacobians_[5][2] = 6.0; |
| 652 | expected_jacobians_[5][3] = 0.0; |
| 653 | expected_jacobians_[5][4] = 6.0 * sum_y; |
| 654 | expected_jacobians_[5][5] = 6.0 * sum_x; |
| 655 | expected_jacobians_[5][6] = 6.0 * sum_x * sum_y; |
| 656 | } |
| 657 | |
| 658 | protected: |
| 659 | double x0_; |
| 660 | double y0_; |
| 661 | double y1_; |
| 662 | double z0_; |
| 663 | double z1_; |
| 664 | double z2_; |
| 665 | |
| 666 | vector<double*> parameter_blocks_; |
| 667 | |
| 668 | scoped_ptr<CostFunction> cost_function_; |
| 669 | |
| 670 | vector<vector<double> > jacobian_vect_; |
| 671 | |
| 672 | vector<double> expected_residuals_; |
| 673 | vector<vector<double> > expected_jacobians_; |
| 674 | }; |
| 675 | |
| 676 | TEST_F(SixParameterCostFunctorTest, TestSixParameterResiduals) { |
| 677 | vector<double> residuals(7, -100000); |
| 678 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 679 | residuals.data(), |
| 680 | NULL)); |
| 681 | for (int i = 0; i < 7; ++i) { |
| 682 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobian) { |
| 687 | vector<double> residuals(7, -100000); |
| 688 | |
| 689 | vector<double*> jacobian; |
| 690 | jacobian.push_back(jacobian_vect_[0].data()); |
| 691 | jacobian.push_back(jacobian_vect_[1].data()); |
| 692 | jacobian.push_back(jacobian_vect_[2].data()); |
| 693 | jacobian.push_back(jacobian_vect_[3].data()); |
| 694 | jacobian.push_back(jacobian_vect_[4].data()); |
| 695 | jacobian.push_back(jacobian_vect_[5].data()); |
| 696 | |
| 697 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 698 | residuals.data(), |
| 699 | jacobian.data())); |
| 700 | |
| 701 | for (int i = 0; i < 7; ++i) { |
| 702 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 703 | } |
| 704 | |
| 705 | for (int i = 0; i < 6; ++i) { |
| 706 | for (int j = 0; j < 7; ++j) { |
| 707 | EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]); |
| 708 | } |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobianVVCVVC) { |
| 713 | vector<double> residuals(7, -100000); |
| 714 | |
| 715 | vector<double*> jacobian; |
| 716 | jacobian.push_back(jacobian_vect_[0].data()); |
| 717 | jacobian.push_back(jacobian_vect_[1].data()); |
| 718 | jacobian.push_back(NULL); |
| 719 | jacobian.push_back(jacobian_vect_[3].data()); |
| 720 | jacobian.push_back(jacobian_vect_[4].data()); |
| 721 | jacobian.push_back(NULL); |
| 722 | |
| 723 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 724 | residuals.data(), |
| 725 | jacobian.data())); |
| 726 | |
| 727 | for (int i = 0; i < 7; ++i) { |
| 728 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 729 | } |
| 730 | |
| 731 | for (int i = 0; i < 6; ++i) { |
| 732 | // Skip the constant variables. |
| 733 | if (i == 2 || i == 5) { |
| 734 | continue; |
| 735 | } |
| 736 | |
| 737 | for (int j = 0; j < 7; ++j) { |
| 738 | EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]); |
| 739 | } |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobianVCCVCV) { |
| 744 | vector<double> residuals(7, -100000); |
| 745 | |
| 746 | vector<double*> jacobian; |
| 747 | jacobian.push_back(jacobian_vect_[0].data()); |
| 748 | jacobian.push_back(NULL); |
| 749 | jacobian.push_back(NULL); |
| 750 | jacobian.push_back(jacobian_vect_[3].data()); |
| 751 | jacobian.push_back(NULL); |
| 752 | jacobian.push_back(jacobian_vect_[5].data()); |
| 753 | |
| 754 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 755 | residuals.data(), |
| 756 | jacobian.data())); |
| 757 | |
| 758 | for (int i = 0; i < 7; ++i) { |
| 759 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 760 | } |
| 761 | |
| 762 | for (int i = 0; i < 6; ++i) { |
| 763 | // Skip the constant variables. |
| 764 | if (i == 1 || i == 2 || i == 4) { |
| 765 | continue; |
| 766 | } |
| 767 | |
| 768 | for (int j = 0; j < 7; ++j) { |
| 769 | EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]); |
| 770 | } |
| 771 | } |
| 772 | } |
| 773 | |
Keir Mierle | 3130b3c | 2013-02-11 19:39:29 -0800 | [diff] [blame] | 774 | } // namespace internal |
| 775 | } // namespace ceres |