Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Keir Mierle | 7492b0d | 2015-03-17 22:30:16 -0700 | [diff] [blame] | 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // mierle@gmail.com (Keir Mierle) |
| 31 | |
| 32 | #include <cstddef> |
| 33 | |
| 34 | #include "ceres/dynamic_numeric_diff_cost_function.h" |
| 35 | #include "ceres/internal/scoped_ptr.h" |
| 36 | #include "gtest/gtest.h" |
| 37 | |
| 38 | namespace ceres { |
| 39 | namespace internal { |
| 40 | |
Sameer Agarwal | bcc865f | 2014-12-17 07:35:09 -0800 | [diff] [blame] | 41 | using std::vector; |
| 42 | |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 43 | const double kTolerance = 1e-6; |
| 44 | |
| 45 | // Takes 2 parameter blocks: |
| 46 | // parameters[0] is size 10. |
| 47 | // parameters[1] is size 5. |
| 48 | // Emits 21 residuals: |
| 49 | // A: i - parameters[0][i], for i in [0,10) -- this is 10 residuals |
| 50 | // B: parameters[0][i] - i, for i in [0,10) -- this is another 10. |
| 51 | // C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i]) |
| 52 | class MyCostFunctor { |
| 53 | public: |
| 54 | bool operator()(double const* const* parameters, double* residuals) const { |
| 55 | const double* params0 = parameters[0]; |
| 56 | int r = 0; |
| 57 | for (int i = 0; i < 10; ++i) { |
| 58 | residuals[r++] = i - params0[i]; |
| 59 | residuals[r++] = params0[i] - i; |
| 60 | } |
| 61 | |
| 62 | double c_residual = 0.0; |
| 63 | for (int i = 0; i < 10; ++i) { |
| 64 | c_residual += pow(params0[i], 2) - 8.0 * params0[i]; |
| 65 | } |
| 66 | |
| 67 | const double* params1 = parameters[1]; |
| 68 | for (int i = 0; i < 5; ++i) { |
| 69 | c_residual += params1[i]; |
| 70 | } |
| 71 | residuals[r++] = c_residual; |
| 72 | return true; |
| 73 | } |
| 74 | }; |
| 75 | |
| 76 | TEST(DynamicNumericdiffCostFunctionTest, TestResiduals) { |
| 77 | vector<double> param_block_0(10, 0.0); |
| 78 | vector<double> param_block_1(5, 0.0); |
| 79 | DynamicNumericDiffCostFunction<MyCostFunctor> cost_function( |
| 80 | new MyCostFunctor()); |
| 81 | cost_function.AddParameterBlock(param_block_0.size()); |
| 82 | cost_function.AddParameterBlock(param_block_1.size()); |
| 83 | cost_function.SetNumResiduals(21); |
| 84 | |
| 85 | // Test residual computation. |
| 86 | vector<double> residuals(21, -100000); |
| 87 | vector<double*> parameter_blocks(2); |
| 88 | parameter_blocks[0] = ¶m_block_0[0]; |
| 89 | parameter_blocks[1] = ¶m_block_1[0]; |
| 90 | EXPECT_TRUE(cost_function.Evaluate(¶meter_blocks[0], |
| 91 | residuals.data(), |
| 92 | NULL)); |
| 93 | for (int r = 0; r < 10; ++r) { |
| 94 | EXPECT_EQ(1.0 * r, residuals.at(r * 2)); |
| 95 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1)); |
| 96 | } |
| 97 | EXPECT_EQ(0, residuals.at(20)); |
| 98 | } |
| 99 | |
| 100 | |
| 101 | TEST(DynamicNumericdiffCostFunctionTest, TestJacobian) { |
| 102 | // Test the residual counting. |
| 103 | vector<double> param_block_0(10, 0.0); |
| 104 | for (int i = 0; i < 10; ++i) { |
| 105 | param_block_0[i] = 2 * i; |
| 106 | } |
| 107 | vector<double> param_block_1(5, 0.0); |
| 108 | DynamicNumericDiffCostFunction<MyCostFunctor> cost_function( |
| 109 | new MyCostFunctor()); |
| 110 | cost_function.AddParameterBlock(param_block_0.size()); |
| 111 | cost_function.AddParameterBlock(param_block_1.size()); |
| 112 | cost_function.SetNumResiduals(21); |
| 113 | |
| 114 | // Prepare the residuals. |
| 115 | vector<double> residuals(21, -100000); |
| 116 | |
| 117 | // Prepare the parameters. |
| 118 | vector<double*> parameter_blocks(2); |
| 119 | parameter_blocks[0] = ¶m_block_0[0]; |
| 120 | parameter_blocks[1] = ¶m_block_1[0]; |
| 121 | |
| 122 | // Prepare the jacobian. |
| 123 | vector<vector<double> > jacobian_vect(2); |
| 124 | jacobian_vect[0].resize(21 * 10, -100000); |
| 125 | jacobian_vect[1].resize(21 * 5, -100000); |
| 126 | vector<double*> jacobian; |
| 127 | jacobian.push_back(jacobian_vect[0].data()); |
| 128 | jacobian.push_back(jacobian_vect[1].data()); |
| 129 | |
| 130 | // Test jacobian computation. |
| 131 | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| 132 | residuals.data(), |
| 133 | jacobian.data())); |
| 134 | |
| 135 | for (int r = 0; r < 10; ++r) { |
| 136 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| 137 | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| 138 | } |
| 139 | EXPECT_EQ(420, residuals.at(20)); |
| 140 | for (int p = 0; p < 10; ++p) { |
| 141 | // Check "A" Jacobian. |
| 142 | EXPECT_NEAR(-1.0, jacobian_vect[0][2*p * 10 + p], kTolerance); |
| 143 | // Check "B" Jacobian. |
| 144 | EXPECT_NEAR(+1.0, jacobian_vect[0][(2*p+1) * 10 + p], kTolerance); |
| 145 | jacobian_vect[0][2*p * 10 + p] = 0.0; |
| 146 | jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; |
| 147 | } |
| 148 | |
| 149 | // Check "C" Jacobian for first parameter block. |
| 150 | for (int p = 0; p < 10; ++p) { |
| 151 | EXPECT_NEAR(4 * p - 8, jacobian_vect[0][20 * 10 + p], kTolerance); |
| 152 | jacobian_vect[0][20 * 10 + p] = 0.0; |
| 153 | } |
| 154 | for (int i = 0; i < jacobian_vect[0].size(); ++i) { |
| 155 | EXPECT_NEAR(0.0, jacobian_vect[0][i], kTolerance); |
| 156 | } |
| 157 | |
| 158 | // Check "C" Jacobian for second parameter block. |
| 159 | for (int p = 0; p < 5; ++p) { |
| 160 | EXPECT_NEAR(1.0, jacobian_vect[1][20 * 5 + p], kTolerance); |
| 161 | jacobian_vect[1][20 * 5 + p] = 0.0; |
| 162 | } |
| 163 | for (int i = 0; i < jacobian_vect[1].size(); ++i) { |
| 164 | EXPECT_NEAR(0.0, jacobian_vect[1][i], kTolerance); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | TEST(DynamicNumericdiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) { // NOLINT |
| 169 | // Test the residual counting. |
| 170 | vector<double> param_block_0(10, 0.0); |
| 171 | for (int i = 0; i < 10; ++i) { |
| 172 | param_block_0[i] = 2 * i; |
| 173 | } |
| 174 | vector<double> param_block_1(5, 0.0); |
| 175 | DynamicNumericDiffCostFunction<MyCostFunctor> cost_function( |
| 176 | new MyCostFunctor()); |
| 177 | cost_function.AddParameterBlock(param_block_0.size()); |
| 178 | cost_function.AddParameterBlock(param_block_1.size()); |
| 179 | cost_function.SetNumResiduals(21); |
| 180 | |
| 181 | // Prepare the residuals. |
| 182 | vector<double> residuals(21, -100000); |
| 183 | |
| 184 | // Prepare the parameters. |
| 185 | vector<double*> parameter_blocks(2); |
| 186 | parameter_blocks[0] = ¶m_block_0[0]; |
| 187 | parameter_blocks[1] = ¶m_block_1[0]; |
| 188 | |
| 189 | // Prepare the jacobian. |
| 190 | vector<vector<double> > jacobian_vect(2); |
| 191 | jacobian_vect[0].resize(21 * 10, -100000); |
| 192 | jacobian_vect[1].resize(21 * 5, -100000); |
| 193 | vector<double*> jacobian; |
| 194 | jacobian.push_back(NULL); |
| 195 | jacobian.push_back(jacobian_vect[1].data()); |
| 196 | |
| 197 | // Test jacobian computation. |
| 198 | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| 199 | residuals.data(), |
| 200 | jacobian.data())); |
| 201 | |
| 202 | for (int r = 0; r < 10; ++r) { |
| 203 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| 204 | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| 205 | } |
| 206 | EXPECT_EQ(420, residuals.at(20)); |
| 207 | |
| 208 | // Check "C" Jacobian for second parameter block. |
| 209 | for (int p = 0; p < 5; ++p) { |
| 210 | EXPECT_NEAR(1.0, jacobian_vect[1][20 * 5 + p], kTolerance); |
| 211 | jacobian_vect[1][20 * 5 + p] = 0.0; |
| 212 | } |
| 213 | for (int i = 0; i < jacobian_vect[1].size(); ++i) { |
| 214 | EXPECT_EQ(0.0, jacobian_vect[1][i]); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | TEST(DynamicNumericdiffCostFunctionTest, JacobianWithSecondParameterBlockConstant) { // NOLINT |
| 219 | // Test the residual counting. |
| 220 | vector<double> param_block_0(10, 0.0); |
| 221 | for (int i = 0; i < 10; ++i) { |
| 222 | param_block_0[i] = 2 * i; |
| 223 | } |
| 224 | vector<double> param_block_1(5, 0.0); |
| 225 | DynamicNumericDiffCostFunction<MyCostFunctor> cost_function( |
| 226 | new MyCostFunctor()); |
| 227 | cost_function.AddParameterBlock(param_block_0.size()); |
| 228 | cost_function.AddParameterBlock(param_block_1.size()); |
| 229 | cost_function.SetNumResiduals(21); |
| 230 | |
| 231 | // Prepare the residuals. |
| 232 | vector<double> residuals(21, -100000); |
| 233 | |
| 234 | // Prepare the parameters. |
| 235 | vector<double*> parameter_blocks(2); |
| 236 | parameter_blocks[0] = ¶m_block_0[0]; |
| 237 | parameter_blocks[1] = ¶m_block_1[0]; |
| 238 | |
| 239 | // Prepare the jacobian. |
| 240 | vector<vector<double> > jacobian_vect(2); |
| 241 | jacobian_vect[0].resize(21 * 10, -100000); |
| 242 | jacobian_vect[1].resize(21 * 5, -100000); |
| 243 | vector<double*> jacobian; |
| 244 | jacobian.push_back(jacobian_vect[0].data()); |
| 245 | jacobian.push_back(NULL); |
| 246 | |
| 247 | // Test jacobian computation. |
| 248 | EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(), |
| 249 | residuals.data(), |
| 250 | jacobian.data())); |
| 251 | |
| 252 | for (int r = 0; r < 10; ++r) { |
| 253 | EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| 254 | EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| 255 | } |
| 256 | EXPECT_EQ(420, residuals.at(20)); |
| 257 | for (int p = 0; p < 10; ++p) { |
| 258 | // Check "A" Jacobian. |
| 259 | EXPECT_NEAR(-1.0, jacobian_vect[0][2*p * 10 + p], kTolerance); |
| 260 | // Check "B" Jacobian. |
| 261 | EXPECT_NEAR(+1.0, jacobian_vect[0][(2*p+1) * 10 + p], kTolerance); |
| 262 | jacobian_vect[0][2*p * 10 + p] = 0.0; |
| 263 | jacobian_vect[0][(2*p+1) * 10 + p] = 0.0; |
| 264 | } |
| 265 | |
| 266 | // Check "C" Jacobian for first parameter block. |
| 267 | for (int p = 0; p < 10; ++p) { |
| 268 | EXPECT_NEAR(4 * p - 8, jacobian_vect[0][20 * 10 + p], kTolerance); |
| 269 | jacobian_vect[0][20 * 10 + p] = 0.0; |
| 270 | } |
| 271 | for (int i = 0; i < jacobian_vect[0].size(); ++i) { |
| 272 | EXPECT_EQ(0.0, jacobian_vect[0][i]); |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | // Takes 3 parameter blocks: |
| 277 | // parameters[0] (x) is size 1. |
| 278 | // parameters[1] (y) is size 2. |
| 279 | // parameters[2] (z) is size 3. |
| 280 | // Emits 7 residuals: |
| 281 | // A: x[0] (= sum_x) |
| 282 | // B: y[0] + 2.0 * y[1] (= sum_y) |
| 283 | // C: z[0] + 3.0 * z[1] + 6.0 * z[2] (= sum_z) |
| 284 | // D: sum_x * sum_y |
| 285 | // E: sum_y * sum_z |
| 286 | // F: sum_x * sum_z |
| 287 | // G: sum_x * sum_y * sum_z |
| 288 | class MyThreeParameterCostFunctor { |
| 289 | public: |
| 290 | template <typename T> |
| 291 | bool operator()(T const* const* parameters, T* residuals) const { |
| 292 | const T* x = parameters[0]; |
| 293 | const T* y = parameters[1]; |
| 294 | const T* z = parameters[2]; |
| 295 | |
| 296 | T sum_x = x[0]; |
| 297 | T sum_y = y[0] + 2.0 * y[1]; |
| 298 | T sum_z = z[0] + 3.0 * z[1] + 6.0 * z[2]; |
| 299 | |
| 300 | residuals[0] = sum_x; |
| 301 | residuals[1] = sum_y; |
| 302 | residuals[2] = sum_z; |
| 303 | residuals[3] = sum_x * sum_y; |
| 304 | residuals[4] = sum_y * sum_z; |
| 305 | residuals[5] = sum_x * sum_z; |
| 306 | residuals[6] = sum_x * sum_y * sum_z; |
| 307 | return true; |
| 308 | } |
| 309 | }; |
| 310 | |
| 311 | class ThreeParameterCostFunctorTest : public ::testing::Test { |
| 312 | protected: |
| 313 | virtual void SetUp() { |
| 314 | // Prepare the parameters. |
| 315 | x_.resize(1); |
| 316 | x_[0] = 0.0; |
| 317 | |
| 318 | y_.resize(2); |
| 319 | y_[0] = 1.0; |
| 320 | y_[1] = 3.0; |
| 321 | |
| 322 | z_.resize(3); |
| 323 | z_[0] = 2.0; |
| 324 | z_[1] = 4.0; |
| 325 | z_[2] = 6.0; |
| 326 | |
| 327 | parameter_blocks_.resize(3); |
| 328 | parameter_blocks_[0] = &x_[0]; |
| 329 | parameter_blocks_[1] = &y_[0]; |
| 330 | parameter_blocks_[2] = &z_[0]; |
| 331 | |
| 332 | // Prepare the cost function. |
| 333 | typedef DynamicNumericDiffCostFunction<MyThreeParameterCostFunctor> |
| 334 | DynamicMyThreeParameterCostFunction; |
| 335 | DynamicMyThreeParameterCostFunction * cost_function = |
| 336 | new DynamicMyThreeParameterCostFunction( |
| 337 | new MyThreeParameterCostFunctor()); |
| 338 | cost_function->AddParameterBlock(1); |
| 339 | cost_function->AddParameterBlock(2); |
| 340 | cost_function->AddParameterBlock(3); |
| 341 | cost_function->SetNumResiduals(7); |
| 342 | |
| 343 | cost_function_.reset(cost_function); |
| 344 | |
| 345 | // Setup jacobian data. |
| 346 | jacobian_vect_.resize(3); |
| 347 | jacobian_vect_[0].resize(7 * x_.size(), -100000); |
| 348 | jacobian_vect_[1].resize(7 * y_.size(), -100000); |
| 349 | jacobian_vect_[2].resize(7 * z_.size(), -100000); |
| 350 | |
| 351 | // Prepare the expected residuals. |
| 352 | const double sum_x = x_[0]; |
| 353 | const double sum_y = y_[0] + 2.0 * y_[1]; |
| 354 | const double sum_z = z_[0] + 3.0 * z_[1] + 6.0 * z_[2]; |
| 355 | |
| 356 | expected_residuals_.resize(7); |
| 357 | expected_residuals_[0] = sum_x; |
| 358 | expected_residuals_[1] = sum_y; |
| 359 | expected_residuals_[2] = sum_z; |
| 360 | expected_residuals_[3] = sum_x * sum_y; |
| 361 | expected_residuals_[4] = sum_y * sum_z; |
| 362 | expected_residuals_[5] = sum_x * sum_z; |
| 363 | expected_residuals_[6] = sum_x * sum_y * sum_z; |
| 364 | |
| 365 | // Prepare the expected jacobian entries. |
| 366 | expected_jacobian_x_.resize(7); |
| 367 | expected_jacobian_x_[0] = 1.0; |
| 368 | expected_jacobian_x_[1] = 0.0; |
| 369 | expected_jacobian_x_[2] = 0.0; |
| 370 | expected_jacobian_x_[3] = sum_y; |
| 371 | expected_jacobian_x_[4] = 0.0; |
| 372 | expected_jacobian_x_[5] = sum_z; |
| 373 | expected_jacobian_x_[6] = sum_y * sum_z; |
| 374 | |
| 375 | expected_jacobian_y_.resize(14); |
| 376 | expected_jacobian_y_[0] = 0.0; |
| 377 | expected_jacobian_y_[1] = 0.0; |
| 378 | expected_jacobian_y_[2] = 1.0; |
| 379 | expected_jacobian_y_[3] = 2.0; |
| 380 | expected_jacobian_y_[4] = 0.0; |
| 381 | expected_jacobian_y_[5] = 0.0; |
| 382 | expected_jacobian_y_[6] = sum_x; |
| 383 | expected_jacobian_y_[7] = 2.0 * sum_x; |
| 384 | expected_jacobian_y_[8] = sum_z; |
| 385 | expected_jacobian_y_[9] = 2.0 * sum_z; |
| 386 | expected_jacobian_y_[10] = 0.0; |
| 387 | expected_jacobian_y_[11] = 0.0; |
| 388 | expected_jacobian_y_[12] = sum_x * sum_z; |
| 389 | expected_jacobian_y_[13] = 2.0 * sum_x * sum_z; |
| 390 | |
| 391 | expected_jacobian_z_.resize(21); |
| 392 | expected_jacobian_z_[0] = 0.0; |
| 393 | expected_jacobian_z_[1] = 0.0; |
| 394 | expected_jacobian_z_[2] = 0.0; |
| 395 | expected_jacobian_z_[3] = 0.0; |
| 396 | expected_jacobian_z_[4] = 0.0; |
| 397 | expected_jacobian_z_[5] = 0.0; |
| 398 | expected_jacobian_z_[6] = 1.0; |
| 399 | expected_jacobian_z_[7] = 3.0; |
| 400 | expected_jacobian_z_[8] = 6.0; |
| 401 | expected_jacobian_z_[9] = 0.0; |
| 402 | expected_jacobian_z_[10] = 0.0; |
| 403 | expected_jacobian_z_[11] = 0.0; |
| 404 | expected_jacobian_z_[12] = sum_y; |
| 405 | expected_jacobian_z_[13] = 3.0 * sum_y; |
| 406 | expected_jacobian_z_[14] = 6.0 * sum_y; |
| 407 | expected_jacobian_z_[15] = sum_x; |
| 408 | expected_jacobian_z_[16] = 3.0 * sum_x; |
| 409 | expected_jacobian_z_[17] = 6.0 * sum_x; |
| 410 | expected_jacobian_z_[18] = sum_x * sum_y; |
| 411 | expected_jacobian_z_[19] = 3.0 * sum_x * sum_y; |
| 412 | expected_jacobian_z_[20] = 6.0 * sum_x * sum_y; |
| 413 | } |
| 414 | |
| 415 | protected: |
| 416 | vector<double> x_; |
| 417 | vector<double> y_; |
| 418 | vector<double> z_; |
| 419 | |
| 420 | vector<double*> parameter_blocks_; |
| 421 | |
| 422 | scoped_ptr<CostFunction> cost_function_; |
| 423 | |
| 424 | vector<vector<double> > jacobian_vect_; |
| 425 | |
| 426 | vector<double> expected_residuals_; |
| 427 | |
| 428 | vector<double> expected_jacobian_x_; |
| 429 | vector<double> expected_jacobian_y_; |
| 430 | vector<double> expected_jacobian_z_; |
| 431 | }; |
| 432 | |
| 433 | TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterResiduals) { |
| 434 | vector<double> residuals(7, -100000); |
| 435 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 436 | residuals.data(), |
| 437 | NULL)); |
| 438 | for (int i = 0; i < 7; ++i) { |
| 439 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterJacobian) { |
| 444 | vector<double> residuals(7, -100000); |
| 445 | |
| 446 | vector<double*> jacobian; |
| 447 | jacobian.push_back(jacobian_vect_[0].data()); |
| 448 | jacobian.push_back(jacobian_vect_[1].data()); |
| 449 | jacobian.push_back(jacobian_vect_[2].data()); |
| 450 | |
| 451 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 452 | residuals.data(), |
| 453 | jacobian.data())); |
| 454 | |
| 455 | for (int i = 0; i < 7; ++i) { |
| 456 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 457 | } |
| 458 | |
| 459 | for (int i = 0; i < 7; ++i) { |
| 460 | EXPECT_NEAR(expected_jacobian_x_[i], jacobian[0][i], kTolerance); |
| 461 | } |
| 462 | |
| 463 | for (int i = 0; i < 14; ++i) { |
| 464 | EXPECT_NEAR(expected_jacobian_y_[i], jacobian[1][i], kTolerance); |
| 465 | } |
| 466 | |
| 467 | for (int i = 0; i < 21; ++i) { |
| 468 | EXPECT_NEAR(expected_jacobian_z_[i], jacobian[2][i], kTolerance); |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | TEST_F(ThreeParameterCostFunctorTest, |
| 473 | ThreeParameterJacobianWithFirstAndLastParameterBlockConstant) { |
| 474 | vector<double> residuals(7, -100000); |
| 475 | |
| 476 | vector<double*> jacobian; |
| 477 | jacobian.push_back(NULL); |
| 478 | jacobian.push_back(jacobian_vect_[1].data()); |
| 479 | jacobian.push_back(NULL); |
| 480 | |
| 481 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 482 | residuals.data(), |
| 483 | jacobian.data())); |
| 484 | |
| 485 | for (int i = 0; i < 7; ++i) { |
| 486 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 487 | } |
| 488 | |
| 489 | for (int i = 0; i < 14; ++i) { |
| 490 | EXPECT_NEAR(expected_jacobian_y_[i], jacobian[1][i], kTolerance); |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | TEST_F(ThreeParameterCostFunctorTest, |
| 495 | ThreeParameterJacobianWithSecondParameterBlockConstant) { |
| 496 | vector<double> residuals(7, -100000); |
| 497 | |
| 498 | vector<double*> jacobian; |
| 499 | jacobian.push_back(jacobian_vect_[0].data()); |
| 500 | jacobian.push_back(NULL); |
| 501 | jacobian.push_back(jacobian_vect_[2].data()); |
| 502 | |
| 503 | EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(), |
| 504 | residuals.data(), |
| 505 | jacobian.data())); |
| 506 | |
| 507 | for (int i = 0; i < 7; ++i) { |
| 508 | EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| 509 | } |
| 510 | |
| 511 | for (int i = 0; i < 7; ++i) { |
| 512 | EXPECT_NEAR(expected_jacobian_x_[i], jacobian[0][i], kTolerance); |
| 513 | } |
| 514 | |
| 515 | for (int i = 0; i < 21; ++i) { |
| 516 | EXPECT_NEAR(expected_jacobian_z_[i], jacobian[2][i], kTolerance); |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | } // namespace internal |
| 521 | } // namespace ceres |