blob: 0d69021b2538f03332b783cbfaccc956dc1b4e6d [file] [log] [blame]
Sameer Agarwal31503212014-08-12 22:46:51 -07001// Ceres Solver - A fast non-linear least squares minimizer
Keir Mierle7492b0d2015-03-17 22:30:16 -07002// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
Sameer Agarwal31503212014-08-12 22:46:51 -07004//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include <map>
32
33#include "ceres/problem_impl.h"
34#include "ceres/sized_cost_function.h"
35#include "ceres/solver.h"
36#include "ceres/line_search_preprocessor.h"
37#include "gtest/gtest.h"
38
39namespace ceres {
40namespace internal {
41
42TEST(LineSearchPreprocessor, ZeroProblem) {
43 ProblemImpl problem;
44 Solver::Options options;
45 options.minimizer_type = LINE_SEARCH;
46 LineSearchPreprocessor preprocessor;
47 PreprocessedProblem pp;
48 EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp));
49}
50
51TEST(LineSearchPreprocessor, ProblemWithInvalidParameterBlock) {
52 ProblemImpl problem;
Björn Piltzccf8aea2014-08-25 16:16:01 +020053 double x = std::numeric_limits<double>::quiet_NaN();
Sameer Agarwal31503212014-08-12 22:46:51 -070054 problem.AddParameterBlock(&x, 1);
55 Solver::Options options;
56 options.minimizer_type = LINE_SEARCH;
57 LineSearchPreprocessor preprocessor;
58 PreprocessedProblem pp;
59 EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp));
60}
61
62TEST(LineSearchPreprocessor, ParameterBlockHasBounds) {
63 ProblemImpl problem;
64 double x = 1.0;
65 problem.AddParameterBlock(&x, 1);
66 problem.SetParameterUpperBound(&x, 0, 1.0);
67 problem.SetParameterLowerBound(&x, 0, 2.0);
68 Solver::Options options;
69 options.minimizer_type = LINE_SEARCH;
70 LineSearchPreprocessor preprocessor;
71 PreprocessedProblem pp;
72 EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp));
73}
74
75class FailingCostFunction : public SizedCostFunction<1, 1> {
76 public:
77 bool Evaluate(double const* const* parameters,
78 double* residuals,
79 double** jacobians) const {
80 return false;
81 }
82};
83
84TEST(LineSearchPreprocessor, RemoveParameterBlocksFailed) {
85 ProblemImpl problem;
86 double x = 3.0;
87 problem.AddResidualBlock(new FailingCostFunction, NULL, &x);
88 problem.SetParameterBlockConstant(&x);
89 Solver::Options options;
90 options.minimizer_type = LINE_SEARCH;
91 LineSearchPreprocessor preprocessor;
92 PreprocessedProblem pp;
93 EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp));
94}
95
96TEST(LineSearchPreprocessor, RemoveParameterBlocksSucceeds) {
97 ProblemImpl problem;
98 double x = 3.0;
99 problem.AddParameterBlock(&x, 1);
100 Solver::Options options;
101 options.minimizer_type = LINE_SEARCH;
102 LineSearchPreprocessor preprocessor;
103 PreprocessedProblem pp;
104 EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp));
105}
106
107template<int kNumResiduals, int N1 = 0, int N2 = 0, int N3 = 0>
108class DummyCostFunction : public SizedCostFunction<kNumResiduals, N1, N2, N3> {
109 public:
110 bool Evaluate(double const* const* parameters,
111 double* residuals,
112 double** jacobians) const {
113 return true;
114 }
115};
116
117TEST(LineSearchPreprocessor, NormalOperation) {
118 ProblemImpl problem;
119 double x = 1.0;
120 double y = 1.0;
121 double z = 1.0;
122 problem.AddResidualBlock(new DummyCostFunction<1, 1, 1>, NULL, &x, &y);
123 problem.AddResidualBlock(new DummyCostFunction<1, 1, 1>, NULL, &y, &z);
124
125 Solver::Options options;
126 options.minimizer_type = LINE_SEARCH;
127
128 LineSearchPreprocessor preprocessor;
129 PreprocessedProblem pp;
130 EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp));
131 EXPECT_EQ(pp.evaluator_options.linear_solver_type, CGNR);
132 EXPECT_TRUE(pp.evaluator.get() != NULL);
133}
134
135} // namespace internal
136} // namespace ceres