blob: 673744b26f78f2e91ff01dfe8598c85a26cc7dcb [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
Keir Mierle7492b0d2015-03-17 22:30:16 -07002// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
Keir Mierle8ebb0732012-04-30 23:09:08 -07004//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30
31#include "ceres/residual_block.h"
32
33#include "gtest/gtest.h"
34#include "ceres/parameter_block.h"
35#include "ceres/sized_cost_function.h"
36#include "ceres/internal/eigen.h"
37#include "ceres/local_parameterization.h"
38
39namespace ceres {
40namespace internal {
41
Sameer Agarwalbcc865f2014-12-17 07:35:09 -080042using std::vector;
43
Keir Mierle8ebb0732012-04-30 23:09:08 -070044// Trivial cost function that accepts three arguments.
45class TernaryCostFunction: public CostFunction {
46 public:
47 TernaryCostFunction(int num_residuals,
Sameer Agarwal85561ee2014-01-07 22:22:14 -080048 int32 parameter_block1_size,
49 int32 parameter_block2_size,
50 int32 parameter_block3_size) {
Keir Mierle8ebb0732012-04-30 23:09:08 -070051 set_num_residuals(num_residuals);
52 mutable_parameter_block_sizes()->push_back(parameter_block1_size);
53 mutable_parameter_block_sizes()->push_back(parameter_block2_size);
54 mutable_parameter_block_sizes()->push_back(parameter_block3_size);
55 }
56
57 virtual bool Evaluate(double const* const* parameters,
58 double* residuals,
59 double** jacobians) const {
60 for (int i = 0; i < num_residuals(); ++i) {
61 residuals[i] = i;
62 }
63 if (jacobians) {
64 for (int k = 0; k < 3; ++k) {
65 if (jacobians[k] != NULL) {
66 MatrixRef jacobian(jacobians[k],
67 num_residuals(),
68 parameter_block_sizes()[k]);
69 jacobian.setConstant(k);
70 }
71 }
72 }
73 return true;
74 }
75};
76
77TEST(ResidualBlock, EvaluteWithNoLossFunctionOrLocalParameterizations) {
78 double scratch[64];
79
80 // Prepare the parameter blocks.
81 double values_x[2];
Keir Mierle04938ef2013-02-17 12:37:55 -080082 ParameterBlock x(values_x, 2, -1);
Keir Mierle8ebb0732012-04-30 23:09:08 -070083
84 double values_y[3];
Keir Mierle04938ef2013-02-17 12:37:55 -080085 ParameterBlock y(values_y, 3, -1);
Keir Mierle8ebb0732012-04-30 23:09:08 -070086
87 double values_z[4];
Keir Mierle04938ef2013-02-17 12:37:55 -080088 ParameterBlock z(values_z, 4, -1);
Keir Mierle8ebb0732012-04-30 23:09:08 -070089
90 vector<ParameterBlock*> parameters;
91 parameters.push_back(&x);
92 parameters.push_back(&y);
93 parameters.push_back(&z);
94
95 TernaryCostFunction cost_function(3, 2, 3, 4);
96
97 // Create the object under tests.
Keir Mierle04938ef2013-02-17 12:37:55 -080098 ResidualBlock residual_block(&cost_function, NULL, parameters, -1);
Keir Mierle8ebb0732012-04-30 23:09:08 -070099
100 // Verify getters.
101 EXPECT_EQ(&cost_function, residual_block.cost_function());
102 EXPECT_EQ(NULL, residual_block.loss_function());
103 EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]);
104 EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]);
105 EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]);
106 EXPECT_EQ(3, residual_block.NumScratchDoublesForEvaluate());
107
108 // Verify cost-only evaluation.
109 double cost;
Sameer Agarwal039ff072013-02-26 09:15:39 -0800110 residual_block.Evaluate(true, &cost, NULL, NULL, scratch);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700111 EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
112
113 // Verify cost and residual evaluation.
114 double residuals[3];
Sameer Agarwal039ff072013-02-26 09:15:39 -0800115 residual_block.Evaluate(true, &cost, residuals, NULL, scratch);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700116 EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
117 EXPECT_EQ(0.0, residuals[0]);
118 EXPECT_EQ(1.0, residuals[1]);
119 EXPECT_EQ(2.0, residuals[2]);
120
121 // Verify cost, residual, and jacobian evaluation.
122 cost = 0.0;
123 VectorRef(residuals, 3).setConstant(0.0);
124
125 Matrix jacobian_rx(3, 2);
126 Matrix jacobian_ry(3, 3);
127 Matrix jacobian_rz(3, 4);
128
129 jacobian_rx.setConstant(-1.0);
130 jacobian_ry.setConstant(-1.0);
131 jacobian_rz.setConstant(-1.0);
132
133 double *jacobian_ptrs[3] = {
134 jacobian_rx.data(),
135 jacobian_ry.data(),
136 jacobian_rz.data()
137 };
138
Sameer Agarwal039ff072013-02-26 09:15:39 -0800139 residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700140 EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
141 EXPECT_EQ(0.0, residuals[0]);
142 EXPECT_EQ(1.0, residuals[1]);
143 EXPECT_EQ(2.0, residuals[2]);
144
145 EXPECT_TRUE((jacobian_rx.array() == 0.0).all()) << "\n" << jacobian_rx;
146 EXPECT_TRUE((jacobian_ry.array() == 1.0).all()) << "\n" << jacobian_ry;
147 EXPECT_TRUE((jacobian_rz.array() == 2.0).all()) << "\n" << jacobian_rz;
148
149 // Verify cost, residual, and partial jacobian evaluation.
150 cost = 0.0;
151 VectorRef(residuals, 3).setConstant(0.0);
152 jacobian_rx.setConstant(-1.0);
153 jacobian_ry.setConstant(-1.0);
154 jacobian_rz.setConstant(-1.0);
155
156 jacobian_ptrs[1] = NULL; // Don't compute the jacobian for y.
157
Sameer Agarwal039ff072013-02-26 09:15:39 -0800158 residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700159 EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
160 EXPECT_EQ(0.0, residuals[0]);
161 EXPECT_EQ(1.0, residuals[1]);
162 EXPECT_EQ(2.0, residuals[2]);
163
164 EXPECT_TRUE((jacobian_rx.array() == 0.0).all()) << "\n" << jacobian_rx;
165 EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry;
166 EXPECT_TRUE((jacobian_rz.array() == 2.0).all()) << "\n" << jacobian_rz;
167}
168
169// Trivial cost function that accepts three arguments.
170class LocallyParameterizedCostFunction: public SizedCostFunction<3, 2, 3, 4> {
171 public:
172 virtual bool Evaluate(double const* const* parameters,
173 double* residuals,
174 double** jacobians) const {
175 for (int i = 0; i < num_residuals(); ++i) {
176 residuals[i] = i;
177 }
178 if (jacobians) {
179 for (int k = 0; k < 3; ++k) {
180 // The jacobians here are full sized, but they are transformed in the
181 // evaluator into the "local" jacobian. In the tests, the "subset
182 // constant" parameterization is used, which should pick out columns
183 // from these jacobians. Put values in the jacobian that make this
184 // obvious; in particular, make the jacobians like this:
185 //
186 // 0 1 2 3 4 ...
187 // 0 1 2 3 4 ...
188 // 0 1 2 3 4 ...
189 //
190 if (jacobians[k] != NULL) {
191 MatrixRef jacobian(jacobians[k],
192 num_residuals(),
193 parameter_block_sizes()[k]);
194 for (int j = 0; j < k + 2; ++j) {
195 jacobian.col(j).setConstant(j);
196 }
197 }
198 }
199 }
200 return true;
201 }
202};
203
204TEST(ResidualBlock, EvaluteWithLocalParameterizations) {
205 double scratch[64];
206
207 // Prepare the parameter blocks.
208 double values_x[2];
Keir Mierle04938ef2013-02-17 12:37:55 -0800209 ParameterBlock x(values_x, 2, -1);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700210
211 double values_y[3];
Keir Mierle04938ef2013-02-17 12:37:55 -0800212 ParameterBlock y(values_y, 3, -1);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700213
214 double values_z[4];
Keir Mierle04938ef2013-02-17 12:37:55 -0800215 ParameterBlock z(values_z, 4, -1);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700216
217 vector<ParameterBlock*> parameters;
218 parameters.push_back(&x);
219 parameters.push_back(&y);
220 parameters.push_back(&z);
221
222 // Make x have the first component fixed.
223 vector<int> x_fixed;
224 x_fixed.push_back(0);
225 SubsetParameterization x_parameterization(2, x_fixed);
226 x.SetParameterization(&x_parameterization);
227
228 // Make z have the last and last component fixed.
229 vector<int> z_fixed;
230 z_fixed.push_back(2);
231 SubsetParameterization z_parameterization(4, z_fixed);
232 z.SetParameterization(&z_parameterization);
233
234 LocallyParameterizedCostFunction cost_function;
235
236 // Create the object under tests.
Keir Mierle04938ef2013-02-17 12:37:55 -0800237 ResidualBlock residual_block(&cost_function, NULL, parameters, -1);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700238
239 // Verify getters.
240 EXPECT_EQ(&cost_function, residual_block.cost_function());
241 EXPECT_EQ(NULL, residual_block.loss_function());
242 EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]);
243 EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]);
244 EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]);
245 EXPECT_EQ(3*(2 + 4) + 3, residual_block.NumScratchDoublesForEvaluate());
246
247 // Verify cost-only evaluation.
248 double cost;
Sameer Agarwal039ff072013-02-26 09:15:39 -0800249 residual_block.Evaluate(true, &cost, NULL, NULL, scratch);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700250 EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
251
252 // Verify cost and residual evaluation.
253 double residuals[3];
Sameer Agarwal039ff072013-02-26 09:15:39 -0800254 residual_block.Evaluate(true, &cost, residuals, NULL, scratch);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700255 EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
256 EXPECT_EQ(0.0, residuals[0]);
257 EXPECT_EQ(1.0, residuals[1]);
258 EXPECT_EQ(2.0, residuals[2]);
259
260 // Verify cost, residual, and jacobian evaluation.
261 cost = 0.0;
262 VectorRef(residuals, 3).setConstant(0.0);
263
264 Matrix jacobian_rx(3, 1); // Since the first element is fixed.
265 Matrix jacobian_ry(3, 3);
266 Matrix jacobian_rz(3, 3); // Since the third element is fixed.
267
268 jacobian_rx.setConstant(-1.0);
269 jacobian_ry.setConstant(-1.0);
270 jacobian_rz.setConstant(-1.0);
271
272 double *jacobian_ptrs[3] = {
273 jacobian_rx.data(),
274 jacobian_ry.data(),
275 jacobian_rz.data()
276 };
277
Sameer Agarwal039ff072013-02-26 09:15:39 -0800278 residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700279 EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
280 EXPECT_EQ(0.0, residuals[0]);
281 EXPECT_EQ(1.0, residuals[1]);
282 EXPECT_EQ(2.0, residuals[2]);
283
284 Matrix expected_jacobian_rx(3, 1);
285 expected_jacobian_rx << 1.0, 1.0, 1.0;
286
287 Matrix expected_jacobian_ry(3, 3);
288 expected_jacobian_ry << 0.0, 1.0, 2.0,
289 0.0, 1.0, 2.0,
290 0.0, 1.0, 2.0;
291
292 Matrix expected_jacobian_rz(3, 3);
293 expected_jacobian_rz << 0.0, 1.0, /* 2.0, */ 3.0, // 3rd parameter constant.
294 0.0, 1.0, /* 2.0, */ 3.0,
295 0.0, 1.0, /* 2.0, */ 3.0;
296
297 EXPECT_EQ(expected_jacobian_rx, jacobian_rx)
298 << "\nExpected:\n" << expected_jacobian_rx
299 << "\nActual:\n" << jacobian_rx;
300 EXPECT_EQ(expected_jacobian_ry, jacobian_ry)
301 << "\nExpected:\n" << expected_jacobian_ry
302 << "\nActual:\n" << jacobian_ry;
303 EXPECT_EQ(expected_jacobian_rz, jacobian_rz)
304 << "\nExpected:\n " << expected_jacobian_rz
305 << "\nActual:\n" << jacobian_rz;
306
307 // Verify cost, residual, and partial jacobian evaluation.
308 cost = 0.0;
309 VectorRef(residuals, 3).setConstant(0.0);
310 jacobian_rx.setConstant(-1.0);
311 jacobian_ry.setConstant(-1.0);
312 jacobian_rz.setConstant(-1.0);
313
314 jacobian_ptrs[1] = NULL; // Don't compute the jacobian for y.
315
Sameer Agarwal039ff072013-02-26 09:15:39 -0800316 residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700317 EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost);
318 EXPECT_EQ(0.0, residuals[0]);
319 EXPECT_EQ(1.0, residuals[1]);
320 EXPECT_EQ(2.0, residuals[2]);
321
322 EXPECT_EQ(expected_jacobian_rx, jacobian_rx);
323 EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry;
324 EXPECT_EQ(expected_jacobian_rz, jacobian_rz);
325}
326
327} // namespace internal
328} // namespace ceres