blob: aef17bbc5ca33ee9bd8f62af84d76fd33ba93691 [file] [log] [blame]
Markus Mollc9eca782012-07-25 11:34:59 +02001// Ceres Solver - A fast non-linear least squares minimizer
Keir Mierle7492b0d2015-03-17 22:30:16 -07002// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
Markus Mollc9eca782012-07-25 11:34:59 +02004//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: moll.markus@arcor.de (Markus Moll)
Sameer Agarwale7295c22012-11-23 18:56:50 -080030// sameeragarwal@google.com (Sameer Agarwal)
Markus Mollc9eca782012-07-25 11:34:59 +020031
Sameer Agarwale7295c22012-11-23 18:56:50 -080032#include "ceres/polynomial.h"
Markus Mollc9eca782012-07-25 11:34:59 +020033
Markus Mollc9eca782012-07-25 11:34:59 +020034#include <cmath>
35#include <cstddef>
Sameer Agarwale7295c22012-11-23 18:56:50 -080036#include <vector>
37
Markus Mollc9eca782012-07-25 11:34:59 +020038#include "Eigen/Dense"
39#include "ceres/internal/port.h"
Alex Stewart7124c342013-11-07 16:10:02 +000040#include "ceres/stringprintf.h"
Sameer Agarwal0beab862012-08-13 15:12:01 -070041#include "glog/logging.h"
Markus Mollc9eca782012-07-25 11:34:59 +020042
43namespace ceres {
44namespace internal {
Sameer Agarwalbcc865f2014-12-17 07:35:09 -080045
Sameer Agarwal05a07ec2015-01-07 15:10:46 -080046using std::string;
Sameer Agarwalbcc865f2014-12-17 07:35:09 -080047using std::vector;
48
Markus Mollc9eca782012-07-25 11:34:59 +020049namespace {
50
51// Balancing function as described by B. N. Parlett and C. Reinsch,
52// "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
53// In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
54// Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
55void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
56 CHECK_NOTNULL(companion_matrix_ptr);
57 Matrix& companion_matrix = *companion_matrix_ptr;
58 Matrix companion_matrix_offdiagonal = companion_matrix;
59 companion_matrix_offdiagonal.diagonal().setZero();
60
61 const int degree = companion_matrix.rows();
62
63 // gamma <= 1 controls how much a change in the scaling has to
64 // lower the 1-norm of the companion matrix to be accepted.
65 //
66 // gamma = 1 seems to lead to cycles (numerical issues?), so
67 // we set it slightly lower.
68 const double gamma = 0.9;
69
70 // Greedily scale row/column pairs until there is no change.
71 bool scaling_has_changed;
72 do {
73 scaling_has_changed = false;
74
75 for (int i = 0; i < degree; ++i) {
76 const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
77 const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
78
79 // Decompose row_norm/col_norm into mantissa * 2^exponent,
80 // where 0.5 <= mantissa < 1. Discard mantissa (return value
81 // of frexp), as only the exponent is needed.
82 int exponent = 0;
83 std::frexp(row_norm / col_norm, &exponent);
84 exponent /= 2;
85
86 if (exponent != 0) {
87 const double scaled_col_norm = std::ldexp(col_norm, exponent);
88 const double scaled_row_norm = std::ldexp(row_norm, -exponent);
89 if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
90 // Accept the new scaling. (Multiplication by powers of 2 should not
91 // introduce rounding errors (ignoring non-normalized numbers and
92 // over- or underflow))
93 scaling_has_changed = true;
94 companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
95 companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
96 }
97 }
98 }
99 } while (scaling_has_changed);
100
101 companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
102 companion_matrix = companion_matrix_offdiagonal;
103 VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
104}
105
106void BuildCompanionMatrix(const Vector& polynomial,
107 Matrix* companion_matrix_ptr) {
108 CHECK_NOTNULL(companion_matrix_ptr);
109 Matrix& companion_matrix = *companion_matrix_ptr;
110
111 const int degree = polynomial.size() - 1;
112
113 companion_matrix.resize(degree, degree);
114 companion_matrix.setZero();
115 companion_matrix.diagonal(-1).setOnes();
Keir Mierleebcfdf42012-08-08 10:29:39 -0700116 companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
Markus Mollc9eca782012-07-25 11:34:59 +0200117}
118
119// Remove leading terms with zero coefficients.
120Vector RemoveLeadingZeros(const Vector& polynomial_in) {
121 int i = 0;
122 while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
123 ++i;
124 }
125 return polynomial_in.tail(polynomial_in.size() - i);
126}
Markus Mollc9eca782012-07-25 11:34:59 +0200127
Sameer Agarwal1284a512013-11-24 15:09:43 -0800128void FindLinearPolynomialRoots(const Vector& polynomial,
129 Vector* real,
130 Vector* imaginary) {
131 CHECK_EQ(polynomial.size(), 2);
132 if (real != NULL) {
133 real->resize(1);
134 (*real)(0) = -polynomial(1) / polynomial(0);
135 }
136
137 if (imaginary != NULL) {
138 imaginary->setZero(1);
139 }
140}
141
142void FindQuadraticPolynomialRoots(const Vector& polynomial,
143 Vector* real,
144 Vector* imaginary) {
145 CHECK_EQ(polynomial.size(), 3);
146 const double a = polynomial(0);
147 const double b = polynomial(1);
148 const double c = polynomial(2);
149 const double D = b * b - 4 * a * c;
150 const double sqrt_D = sqrt(fabs(D));
151 if (real != NULL) {
152 real->setZero(2);
153 }
154 if (imaginary != NULL) {
155 imaginary->setZero(2);
156 }
157
158 // Real roots.
159 if (D >= 0) {
160 if (real != NULL) {
161 // Stable quadratic roots according to BKP Horn.
162 // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf
163 if (b >= 0) {
164 (*real)(0) = (-b - sqrt_D) / (2.0 * a);
165 (*real)(1) = (2.0 * c) / (-b - sqrt_D);
166 } else {
167 (*real)(0) = (2.0 * c) / (-b + sqrt_D);
168 (*real)(1) = (-b + sqrt_D) / (2.0 * a);
169 }
170 }
171 return;
172 }
173
174 // Use the normal quadratic formula for the complex case.
175 if (real != NULL) {
176 (*real)(0) = -b / (2.0 * a);
177 (*real)(1) = -b / (2.0 * a);
178 }
179 if (imaginary != NULL) {
180 (*imaginary)(0) = sqrt_D / (2.0 * a);
181 (*imaginary)(1) = -sqrt_D / (2.0 * a);
182 }
183}
Sergey Sharybinb8110412014-01-02 15:19:17 +0600184} // namespace
Sameer Agarwal1284a512013-11-24 15:09:43 -0800185
Markus Mollc9eca782012-07-25 11:34:59 +0200186bool FindPolynomialRoots(const Vector& polynomial_in,
187 Vector* real,
188 Vector* imaginary) {
Markus Mollc9eca782012-07-25 11:34:59 +0200189 if (polynomial_in.size() == 0) {
190 LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
191 return false;
192 }
193
194 Vector polynomial = RemoveLeadingZeros(polynomial_in);
195 const int degree = polynomial.size() - 1;
196
Sameer Agarwal1284a512013-11-24 15:09:43 -0800197 VLOG(3) << "Input polynomial: " << polynomial_in.transpose();
198 if (polynomial.size() != polynomial_in.size()) {
199 VLOG(3) << "Trimmed polynomial: " << polynomial.transpose();
200 }
201
Markus Mollc9eca782012-07-25 11:34:59 +0200202 // Is the polynomial constant?
203 if (degree == 0) {
204 LOG(WARNING) << "Trying to extract roots from a constant "
205 << "polynomial in FindPolynomialRoots";
Alex Stewartbf4c1b72013-11-14 21:27:20 +0000206 // We return true with no roots, not false, as if the polynomial is constant
207 // it is correct that there are no roots. It is not the case that they were
208 // there, but that we have failed to extract them.
Markus Mollc9eca782012-07-25 11:34:59 +0200209 return true;
210 }
211
Sameer Agarwal1284a512013-11-24 15:09:43 -0800212 // Linear
213 if (degree == 1) {
214 FindLinearPolynomialRoots(polynomial, real, imaginary);
215 return true;
216 }
217
218 // Quadratic
219 if (degree == 2) {
220 FindQuadraticPolynomialRoots(polynomial, real, imaginary);
221 return true;
222 }
223
224 // The degree is now known to be at least 3. For cubic or higher
225 // roots we use the method of companion matrices.
226
Markus Mollc9eca782012-07-25 11:34:59 +0200227 // Divide by leading term
228 const double leading_term = polynomial(0);
229 polynomial /= leading_term;
230
Markus Mollc9eca782012-07-25 11:34:59 +0200231 // Build and balance the companion matrix to the polynomial.
232 Matrix companion_matrix(degree, degree);
233 BuildCompanionMatrix(polynomial, &companion_matrix);
234 BalanceCompanionMatrix(&companion_matrix);
235
236 // Find its (complex) eigenvalues.
Petter Strandmarkab8e2dc2012-09-10 08:46:22 -0700237 Eigen::EigenSolver<Matrix> solver(companion_matrix, false);
Markus Mollc9eca782012-07-25 11:34:59 +0200238 if (solver.info() != Eigen::Success) {
239 LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
240 return false;
241 }
242
243 // Output roots
244 if (real != NULL) {
245 *real = solver.eigenvalues().real();
246 } else {
247 LOG(WARNING) << "NULL pointer passed as real argument to "
248 << "FindPolynomialRoots. Real parts of the roots will not "
249 << "be returned.";
250 }
251 if (imaginary != NULL) {
252 *imaginary = solver.eigenvalues().imag();
253 }
254 return true;
255}
256
Sameer Agarwale7295c22012-11-23 18:56:50 -0800257Vector DifferentiatePolynomial(const Vector& polynomial) {
258 const int degree = polynomial.rows() - 1;
259 CHECK_GE(degree, 0);
Sameer Agarwalc89ea4b2013-01-09 16:09:35 -0800260
261 // Degree zero polynomials are constants, and their derivative does
262 // not result in a smaller degree polynomial, just a degree zero
263 // polynomial with value zero.
264 if (degree == 0) {
265 return Eigen::VectorXd::Zero(1);
266 }
267
Sameer Agarwale7295c22012-11-23 18:56:50 -0800268 Vector derivative(degree);
269 for (int i = 0; i < degree; ++i) {
270 derivative(i) = (degree - i) * polynomial(i);
271 }
272
273 return derivative;
274}
275
276void MinimizePolynomial(const Vector& polynomial,
277 const double x_min,
278 const double x_max,
279 double* optimal_x,
280 double* optimal_value) {
281 // Find the minimum of the polynomial at the two ends.
282 //
283 // We start by inspecting the middle of the interval. Technically
284 // this is not needed, but we do this to make this code as close to
285 // the minFunc package as possible.
286 *optimal_x = (x_min + x_max) / 2.0;
287 *optimal_value = EvaluatePolynomial(polynomial, *optimal_x);
288
289 const double x_min_value = EvaluatePolynomial(polynomial, x_min);
290 if (x_min_value < *optimal_value) {
291 *optimal_value = x_min_value;
292 *optimal_x = x_min;
293 }
294
295 const double x_max_value = EvaluatePolynomial(polynomial, x_max);
296 if (x_max_value < *optimal_value) {
297 *optimal_value = x_max_value;
298 *optimal_x = x_max;
299 }
300
301 // If the polynomial is linear or constant, we are done.
302 if (polynomial.rows() <= 2) {
303 return;
304 }
305
306 const Vector derivative = DifferentiatePolynomial(polynomial);
307 Vector roots_real;
308 if (!FindPolynomialRoots(derivative, &roots_real, NULL)) {
309 LOG(WARNING) << "Unable to find the critical points of "
310 << "the interpolating polynomial.";
311 return;
312 }
313
314 // This is a bit of an overkill, as some of the roots may actually
315 // have a complex part, but its simpler to just check these values.
316 for (int i = 0; i < roots_real.rows(); ++i) {
317 const double root = roots_real(i);
318 if ((root < x_min) || (root > x_max)) {
319 continue;
320 }
321
322 const double value = EvaluatePolynomial(polynomial, root);
323 if (value < *optimal_value) {
324 *optimal_value = value;
325 *optimal_x = root;
326 }
327 }
328}
329
Alex Stewart7124c342013-11-07 16:10:02 +0000330string FunctionSample::ToDebugString() const {
331 return StringPrintf("[x: %.8e, value: %.8e, gradient: %.8e, "
332 "value_is_valid: %d, gradient_is_valid: %d]",
333 x, value, gradient, value_is_valid, gradient_is_valid);
334}
335
Sameer Agarwale7295c22012-11-23 18:56:50 -0800336Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) {
337 const int num_samples = samples.size();
338 int num_constraints = 0;
339 for (int i = 0; i < num_samples; ++i) {
340 if (samples[i].value_is_valid) {
341 ++num_constraints;
342 }
343 if (samples[i].gradient_is_valid) {
344 ++num_constraints;
345 }
346 }
347
348 const int degree = num_constraints - 1;
Sameer Agarwal1284a512013-11-24 15:09:43 -0800349
Sameer Agarwale7295c22012-11-23 18:56:50 -0800350 Matrix lhs = Matrix::Zero(num_constraints, num_constraints);
351 Vector rhs = Vector::Zero(num_constraints);
352
353 int row = 0;
354 for (int i = 0; i < num_samples; ++i) {
355 const FunctionSample& sample = samples[i];
356 if (sample.value_is_valid) {
Sameer Agarwale7295c22012-11-23 18:56:50 -0800357 for (int j = 0; j <= degree; ++j) {
358 lhs(row, j) = pow(sample.x, degree - j);
359 }
360 rhs(row) = sample.value;
361 ++row;
362 }
363
364 if (sample.gradient_is_valid) {
365 for (int j = 0; j < degree; ++j) {
Sameer Agarwale7295c22012-11-23 18:56:50 -0800366 lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1);
367 }
368 rhs(row) = sample.gradient;
369 ++row;
370 }
371 }
372
Sameer Agarwal5365ad82017-02-12 11:45:48 -0800373 // TODO(sameeragarwal): This is a hack.
374 // https://github.com/ceres-solver/ceres-solver/issues/248
375 Eigen::FullPivLU<Matrix> lu(lhs);
376 return lu.setThreshold(0.0).solve(rhs);
Sameer Agarwale7295c22012-11-23 18:56:50 -0800377}
378
379void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,
380 double x_min,
381 double x_max,
382 double* optimal_x,
383 double* optimal_value) {
384 const Vector polynomial = FindInterpolatingPolynomial(samples);
385 MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value);
386 for (int i = 0; i < samples.size(); ++i) {
387 const FunctionSample& sample = samples[i];
388 if ((sample.x < x_min) || (sample.x > x_max)) {
389 continue;
390 }
391
392 const double value = EvaluatePolynomial(polynomial, sample.x);
393 if (value < *optimal_value) {
394 *optimal_x = sample.x;
395 *optimal_value = value;
396 }
397 }
398}
399
Markus Mollc9eca782012-07-25 11:34:59 +0200400} // namespace internal
401} // namespace ceres