Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include <cmath> |
Keir Mierle | 58ede27 | 2012-06-24 17:23:57 -0700 | [diff] [blame] | 32 | #include "ceres/fpclassify.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 33 | #include "ceres/internal/autodiff.h" |
| 34 | #include "ceres/internal/eigen.h" |
| 35 | #include "ceres/local_parameterization.h" |
| 36 | #include "ceres/rotation.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 37 | #include "gtest/gtest.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 38 | |
| 39 | namespace ceres { |
| 40 | namespace internal { |
| 41 | |
| 42 | TEST(IdentityParameterization, EverythingTest) { |
| 43 | IdentityParameterization parameterization(3); |
| 44 | EXPECT_EQ(parameterization.GlobalSize(), 3); |
| 45 | EXPECT_EQ(parameterization.LocalSize(), 3); |
| 46 | |
| 47 | double x[3] = {1.0, 2.0, 3.0}; |
| 48 | double delta[3] = {0.0, 1.0, 2.0}; |
| 49 | double x_plus_delta[3] = {0.0, 0.0, 0.0}; |
| 50 | parameterization.Plus(x, delta, x_plus_delta); |
| 51 | EXPECT_EQ(x_plus_delta[0], 1.0); |
| 52 | EXPECT_EQ(x_plus_delta[1], 3.0); |
| 53 | EXPECT_EQ(x_plus_delta[2], 5.0); |
| 54 | |
| 55 | double jacobian[9]; |
| 56 | parameterization.ComputeJacobian(x, jacobian); |
| 57 | int k = 0; |
| 58 | for (int i = 0; i < 3; ++i) { |
| 59 | for (int j = 0; j < 3; ++j, ++k) { |
| 60 | EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0); |
| 61 | } |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | TEST(SubsetParameterization, DeathTests) { |
| 66 | vector<int> constant_parameters; |
Sameer Agarwal | c014997 | 2012-09-18 13:55:18 -0700 | [diff] [blame] | 67 | EXPECT_DEATH_IF_SUPPORTED( |
| 68 | SubsetParameterization parameterization(1, constant_parameters), |
| 69 | "at least"); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 70 | |
| 71 | constant_parameters.push_back(0); |
Sameer Agarwal | c014997 | 2012-09-18 13:55:18 -0700 | [diff] [blame] | 72 | EXPECT_DEATH_IF_SUPPORTED( |
| 73 | SubsetParameterization parameterization(1, constant_parameters), |
| 74 | "Number of parameters"); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 75 | |
| 76 | constant_parameters.push_back(1); |
Sameer Agarwal | c014997 | 2012-09-18 13:55:18 -0700 | [diff] [blame] | 77 | EXPECT_DEATH_IF_SUPPORTED( |
| 78 | SubsetParameterization parameterization(2, constant_parameters), |
| 79 | "Number of parameters"); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 80 | |
| 81 | constant_parameters.push_back(1); |
Sameer Agarwal | c014997 | 2012-09-18 13:55:18 -0700 | [diff] [blame] | 82 | EXPECT_DEATH_IF_SUPPORTED( |
| 83 | SubsetParameterization parameterization(2, constant_parameters), |
| 84 | "duplicates"); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 85 | } |
| 86 | |
| 87 | TEST(SubsetParameterization, NormalFunctionTest) { |
| 88 | double x[4] = {1.0, 2.0, 3.0, 4.0}; |
| 89 | for (int i = 0; i < 4; ++i) { |
| 90 | vector<int> constant_parameters; |
| 91 | constant_parameters.push_back(i); |
| 92 | SubsetParameterization parameterization(4, constant_parameters); |
| 93 | double delta[3] = {1.0, 2.0, 3.0}; |
| 94 | double x_plus_delta[4] = {0.0, 0.0, 0.0}; |
| 95 | |
| 96 | parameterization.Plus(x, delta, x_plus_delta); |
| 97 | int k = 0; |
| 98 | for (int j = 0; j < 4; ++j) { |
| 99 | if (j == i) { |
| 100 | EXPECT_EQ(x_plus_delta[j], x[j]); |
| 101 | } else { |
| 102 | EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]); |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | double jacobian[4 * 3]; |
| 107 | parameterization.ComputeJacobian(x, jacobian); |
| 108 | int delta_cursor = 0; |
| 109 | int jacobian_cursor = 0; |
| 110 | for (int j = 0; j < 4; ++j) { |
| 111 | if (j != i) { |
| 112 | for (int k = 0; k < 3; ++k, jacobian_cursor++) { |
| 113 | EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0); |
| 114 | } |
| 115 | ++delta_cursor; |
| 116 | } else { |
| 117 | for (int k = 0; k < 3; ++k, jacobian_cursor++) { |
| 118 | EXPECT_EQ(jacobian[jacobian_cursor], 0.0); |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | }; |
| 123 | } |
| 124 | |
| 125 | // Functor needed to implement automatically differentiated Plus for |
| 126 | // quaternions. |
| 127 | struct QuaternionPlus { |
| 128 | template<typename T> |
| 129 | bool operator()(const T* x, const T* delta, T* x_plus_delta) const { |
| 130 | const T squared_norm_delta = |
| 131 | delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; |
| 132 | |
| 133 | T q_delta[4]; |
| 134 | if (squared_norm_delta > T(0.0)) { |
| 135 | T norm_delta = sqrt(squared_norm_delta); |
| 136 | const T sin_delta_by_delta = sin(norm_delta) / norm_delta; |
| 137 | q_delta[0] = cos(norm_delta); |
| 138 | q_delta[1] = sin_delta_by_delta * delta[0]; |
| 139 | q_delta[2] = sin_delta_by_delta * delta[1]; |
| 140 | q_delta[3] = sin_delta_by_delta * delta[2]; |
| 141 | } else { |
| 142 | // We do not just use q_delta = [1,0,0,0] here because that is a |
| 143 | // constant and when used for automatic differentiation will |
| 144 | // lead to a zero derivative. Instead we take a first order |
| 145 | // approximation and evaluate it at zero. |
| 146 | q_delta[0] = T(1.0); |
| 147 | q_delta[1] = delta[0]; |
| 148 | q_delta[2] = delta[1]; |
| 149 | q_delta[3] = delta[2]; |
| 150 | } |
| 151 | |
| 152 | QuaternionProduct(q_delta, x, x_plus_delta); |
| 153 | return true; |
| 154 | } |
| 155 | }; |
| 156 | |
| 157 | void QuaternionParameterizationTestHelper(const double* x, |
| 158 | const double* delta, |
| 159 | const double* q_delta) { |
Sameer Agarwal | b01f198 | 2012-05-10 12:18:39 -0700 | [diff] [blame] | 160 | const double kTolerance = 1e-14; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 161 | double x_plus_delta_ref[4] = {0.0, 0.0, 0.0, 0.0}; |
| 162 | QuaternionProduct(q_delta, x, x_plus_delta_ref); |
| 163 | |
| 164 | double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; |
| 165 | QuaternionParameterization param; |
| 166 | param.Plus(x, delta, x_plus_delta); |
| 167 | for (int i = 0; i < 4; ++i) { |
Sameer Agarwal | b01f198 | 2012-05-10 12:18:39 -0700 | [diff] [blame] | 168 | EXPECT_NEAR(x_plus_delta[i], x_plus_delta_ref[i], kTolerance); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 169 | } |
| 170 | |
| 171 | const double x_plus_delta_norm = |
| 172 | sqrt(x_plus_delta[0] * x_plus_delta[0] + |
| 173 | x_plus_delta[1] * x_plus_delta[1] + |
| 174 | x_plus_delta[2] * x_plus_delta[2] + |
| 175 | x_plus_delta[3] * x_plus_delta[3]); |
| 176 | |
Sameer Agarwal | b01f198 | 2012-05-10 12:18:39 -0700 | [diff] [blame] | 177 | EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 178 | |
| 179 | double jacobian_ref[12]; |
| 180 | double zero_delta[3] = {0.0, 0.0, 0.0}; |
| 181 | const double* parameters[2] = {x, zero_delta}; |
| 182 | double* jacobian_array[2] = { NULL, jacobian_ref }; |
| 183 | |
| 184 | // Autodiff jacobian at delta_x = 0. |
Keir Mierle | fdeb577 | 2012-05-09 07:38:07 -0700 | [diff] [blame] | 185 | internal::AutoDiff<QuaternionPlus, double, 4, 3>::Differentiate( |
| 186 | QuaternionPlus(), parameters, 4, x_plus_delta, jacobian_array); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 187 | |
| 188 | double jacobian[12]; |
| 189 | param.ComputeJacobian(x, jacobian); |
| 190 | for (int i = 0; i < 12; ++i) { |
Keir Mierle | 58ede27 | 2012-06-24 17:23:57 -0700 | [diff] [blame] | 191 | EXPECT_TRUE(IsFinite(jacobian[i])); |
Sameer Agarwal | b01f198 | 2012-05-10 12:18:39 -0700 | [diff] [blame] | 192 | EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance) |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 193 | << "Jacobian mismatch: i = " << i |
| 194 | << "\n Expected \n" << ConstMatrixRef(jacobian_ref, 4, 3) |
| 195 | << "\n Actual \n" << ConstMatrixRef(jacobian, 4, 3); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | TEST(QuaternionParameterization, ZeroTest) { |
| 200 | double x[4] = {0.5, 0.5, 0.5, 0.5}; |
| 201 | double delta[3] = {0.0, 0.0, 0.0}; |
| 202 | double q_delta[4] = {1.0, 0.0, 0.0, 0.0}; |
| 203 | QuaternionParameterizationTestHelper(x, delta, q_delta); |
| 204 | } |
| 205 | |
| 206 | |
| 207 | TEST(QuaternionParameterization, NearZeroTest) { |
| 208 | double x[4] = {0.52, 0.25, 0.15, 0.45}; |
| 209 | double norm_x = sqrt(x[0] * x[0] + |
| 210 | x[1] * x[1] + |
| 211 | x[2] * x[2] + |
| 212 | x[3] * x[3]); |
| 213 | for (int i = 0; i < 4; ++i) { |
| 214 | x[i] = x[i] / norm_x; |
| 215 | } |
| 216 | |
| 217 | double delta[3] = {0.24, 0.15, 0.10}; |
| 218 | for (int i = 0; i < 3; ++i) { |
| 219 | delta[i] = delta[i] * 1e-14; |
| 220 | } |
| 221 | |
| 222 | double q_delta[4]; |
| 223 | q_delta[0] = 1.0; |
| 224 | q_delta[1] = delta[0]; |
| 225 | q_delta[2] = delta[1]; |
| 226 | q_delta[3] = delta[2]; |
| 227 | |
| 228 | QuaternionParameterizationTestHelper(x, delta, q_delta); |
| 229 | } |
| 230 | |
| 231 | TEST(QuaternionParameterization, AwayFromZeroTest) { |
| 232 | double x[4] = {0.52, 0.25, 0.15, 0.45}; |
| 233 | double norm_x = sqrt(x[0] * x[0] + |
| 234 | x[1] * x[1] + |
| 235 | x[2] * x[2] + |
| 236 | x[3] * x[3]); |
| 237 | |
| 238 | for (int i = 0; i < 4; ++i) { |
| 239 | x[i] = x[i] / norm_x; |
| 240 | } |
| 241 | |
| 242 | double delta[3] = {0.24, 0.15, 0.10}; |
| 243 | const double delta_norm = sqrt(delta[0] * delta[0] + |
| 244 | delta[1] * delta[1] + |
| 245 | delta[2] * delta[2]); |
| 246 | double q_delta[4]; |
| 247 | q_delta[0] = cos(delta_norm); |
| 248 | q_delta[1] = sin(delta_norm) / delta_norm * delta[0]; |
| 249 | q_delta[2] = sin(delta_norm) / delta_norm * delta[1]; |
| 250 | q_delta[3] = sin(delta_norm) / delta_norm * delta[2]; |
| 251 | |
| 252 | QuaternionParameterizationTestHelper(x, delta, q_delta); |
| 253 | } |
| 254 | |
| 255 | |
| 256 | } // namespace internal |
| 257 | } // namespace ceres |