blob: 299a54144b03a1f3f93a378e9b70a019c234fbb7 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Abstract interface for objects solving linear systems of various
32// kinds.
33
34#ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
35#define CERES_INTERNAL_LINEAR_SOLVER_H_
36
37#include <cstddef>
38
39#include <glog/logging.h>
40#include "ceres/block_sparse_matrix.h"
41#include "ceres/casts.h"
42#include "ceres/compressed_row_sparse_matrix.h"
43#include "ceres/dense_sparse_matrix.h"
44#include "ceres/triplet_sparse_matrix.h"
45#include "ceres/types.h"
46
47namespace ceres {
48namespace internal {
49
50class LinearOperator;
51
52// Abstract base class for objects that implement algorithms for
53// solving linear systems
54//
55// Ax = b
56//
57// It is expected that a single instance of a LinearSolver object
Sameer Agarwala9d8ef82012-05-14 02:28:05 -070058// maybe used multiple times for solving multiple linear systems with
59// the same sparsity structure. This allows them to cache and reuse
60// information across solves. This means that calling Solve on the
61// same LinearSolver instance with two different linear systems will
62// result in undefined behaviour.
Keir Mierle8ebb0732012-04-30 23:09:08 -070063//
64// Subclasses of LinearSolver use two structs to configure themselves.
65// The Options struct configures the LinearSolver object for its
66// lifetime. The PerSolveOptions struct is used to specify options for
67// a particular Solve call.
68class LinearSolver {
69 public:
70 struct Options {
71 Options()
72 : type(SPARSE_NORMAL_CHOLESKY),
73 preconditioner_type(JACOBI),
74 min_num_iterations(1),
75 max_num_iterations(1),
76 num_threads(1),
Keir Mierle8ebb0732012-04-30 23:09:08 -070077 num_eliminate_blocks(0),
78 residual_reset_period(10),
79 row_block_size(Dynamic),
80 e_block_size(Dynamic),
81 f_block_size(Dynamic) {
82 }
83
84 LinearSolverType type;
85
86 PreconditionerType preconditioner_type;
87
88 // Number of internal iterations that the solver uses. This
89 // parameter only makes sense for iterative solvers like CG.
90 int min_num_iterations;
91 int max_num_iterations;
92
93 // If possible, how many threads can the solver use.
94 int num_threads;
95
Keir Mierle8ebb0732012-04-30 23:09:08 -070096 // Eliminate 0 to num_eliminate_blocks - 1 from the Normal
97 // equations to form a schur complement. Only used by the Schur
98 // complement based solver. The most common use for this parameter
99 // is in the case of structure from motion problems where we have
100 // camera blocks and point blocks. Then setting the
101 // num_eliminate_blocks to the number of points allows the solver
102 // to use the Schur complement trick. For more details see the
103 // description of this parameter in solver.h.
104 int num_eliminate_blocks;
105
106 // Iterative solvers, e.g. Preconditioned Conjugate Gradients
107 // maintain a cheap estimate of the residual which may become
108 // inaccurate over time. Thus for non-zero values of this
109 // parameter, the solver can be told to recalculate the value of
110 // the residual using a |b - Ax| evaluation.
111 int residual_reset_period;
112
113 // If the block sizes in a BlockSparseMatrix are fixed, then in
114 // some cases the Schur complement based solvers can detect and
115 // specialize on them.
116 //
117 // It is expected that these parameters are set programmatically
118 // rather than manually.
119 //
Sameer Agarwala9d8ef82012-05-14 02:28:05 -0700120 // Please see schur_complement_solver.h and schur_eliminator.h for
121 // more details.
Keir Mierle8ebb0732012-04-30 23:09:08 -0700122 int row_block_size;
123 int e_block_size;
124 int f_block_size;
125 };
126
127 // Options for the Solve method.
128 struct PerSolveOptions {
129 PerSolveOptions()
130 : D(NULL),
131 preconditioner(NULL),
132 r_tolerance(0.0),
133 q_tolerance(0.0) {
134 }
135
136 // This option only makes sense for unsymmetric linear solvers
137 // that can solve rectangular linear systems.
138 //
139 // Given a matrix A, an optional diagonal matrix D as a vector,
140 // and a vector b, the linear solver will solve for
141 //
142 // | A | x = | b |
143 // | D | | 0 |
144 //
145 // If D is null, then it is treated as zero, and the solver returns
146 // the solution to
147 //
148 // A x = b
149 //
150 // In either case, x is the vector that solves the following
151 // optimization problem.
152 //
Keir Mierlef7898fb2012-05-05 20:55:08 -0700153 // arg min_x ||Ax - b||^2 + ||Dx||^2
Keir Mierle8ebb0732012-04-30 23:09:08 -0700154 //
155 // Here A is a matrix of size m x n, with full column rank. If A
156 // does not have full column rank, the results returned by the
157 // solver cannot be relied on. D, if it is not null is an array of
158 // size n. b is an array of size m and x is an array of size n.
159 double * D;
160
161 // This option only makes sense for iterative solvers.
162 //
163 // In general the performance of an iterative linear solver
164 // depends on the condition number of the matrix A. For example
165 // the convergence rate of the conjugate gradients algorithm
166 // is proportional to the square root of the condition number.
167 //
168 // One particularly useful technique for improving the
169 // conditioning of a linear system is to precondition it. In its
170 // simplest form a preconditioner is a matrix M such that instead
171 // of solving Ax = b, we solve the linear system AM^{-1} y = b
172 // instead, where M is such that the condition number k(AM^{-1})
173 // is smaller than the conditioner k(A). Given the solution to
174 // this system, x = M^{-1} y. The iterative solver takes care of
175 // the mechanics of solving the preconditioned system and
176 // returning the corrected solution x. The user only needs to
177 // supply a linear operator.
178 //
179 // A null preconditioner is equivalent to an identity matrix being
180 // used a preconditioner.
181 LinearOperator* preconditioner;
182
183
184 // The following tolerance related options only makes sense for
185 // iterative solvers. Direct solvers ignore them.
186
187 // Solver terminates when
188 //
189 // |Ax - b| <= r_tolerance * |b|.
190 //
191 // This is the most commonly used termination criterion for
192 // iterative solvers.
193 double r_tolerance;
194
195 // For PSD matrices A, let
196 //
197 // Q(x) = x'Ax - 2b'x
198 //
199 // be the cost of the quadratic function defined by A and b. Then,
200 // the solver terminates at iteration i if
201 //
202 // i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
203 //
204 // This termination criterion is more useful when using CG to
205 // solve the Newton step. This particular convergence test comes
206 // from Stephen Nash's work on truncated Newton
207 // methods. References:
208 //
209 // 1. Stephen G. Nash & Ariela Sofer, Assessing A Search
210 // Direction Within A Truncated Newton Method, Operation
211 // Research Letters 9(1990) 219-221.
212 //
213 // 2. Stephen G. Nash, A Survey of Truncated Newton Methods,
214 // Journal of Computational and Applied Mathematics,
215 // 124(1-2), 45-59, 2000.
216 //
217 double q_tolerance;
218 };
219
220 // Summary of a call to the Solve method. We should move away from
221 // the true/false method for determining solver success. We should
222 // let the summary object do the talking.
223 struct Summary {
224 Summary()
225 : residual_norm(0.0),
226 num_iterations(-1),
227 termination_type(FAILURE) {
228 }
229
230 double residual_norm;
231 int num_iterations;
232 LinearSolverTerminationType termination_type;
233 };
234
235 virtual ~LinearSolver();
236
237 // Solve Ax = b.
238 virtual Summary Solve(LinearOperator* A,
239 const double* b,
240 const PerSolveOptions& per_solve_options,
241 double* x) = 0;
242
Sameer Agarwala9d8ef82012-05-14 02:28:05 -0700243 // Factory
Keir Mierle8ebb0732012-04-30 23:09:08 -0700244 static LinearSolver* Create(const Options& options);
245};
246
247// This templated subclass of LinearSolver serves as a base class for
248// other linear solvers that depend on the particular matrix layout of
249// the underlying linear operator. For example some linear solvers
250// need low level access to the TripletSparseMatrix implementing the
251// LinearOperator interface. This class hides those implementation
252// details behind a private virtual method, and has the Solve method
253// perform the necessary upcasting.
254template <typename MatrixType>
255class TypedLinearSolver : public LinearSolver {
256 public:
257 virtual ~TypedLinearSolver() {}
258 virtual LinearSolver::Summary Solve(
259 LinearOperator* A,
260 const double* b,
261 const LinearSolver::PerSolveOptions& per_solve_options,
262 double* x) {
263 CHECK_NOTNULL(A);
264 CHECK_NOTNULL(b);
265 CHECK_NOTNULL(x);
266 return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
267 }
268
269 private:
270 virtual LinearSolver::Summary SolveImpl(
271 MatrixType* A,
272 const double* b,
273 const LinearSolver::PerSolveOptions& per_solve_options,
274 double* x) = 0;
275};
276
277// Linear solvers that depend on acccess to the low level structure of
278// a SparseMatrix.
279typedef TypedLinearSolver<BlockSparseMatrix> BlockSparseMatrixSolver; // NOLINT
280typedef TypedLinearSolver<BlockSparseMatrixBase> BlockSparseMatrixBaseSolver; // NOLINT
281typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver; // NOLINT
282typedef TypedLinearSolver<DenseSparseMatrix> DenseSparseMatrixSolver; // NOLINT
283typedef TypedLinearSolver<TripletSparseMatrix> TripletSparseMatrixSolver; // NOLINT
284
285} // namespace internal
286} // namespace ceres
287
288#endif // CERES_INTERNAL_LINEAR_SOLVER_H_