blob: b8759eb5547079d72ed6c4aa27b5db09e7f4e692 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
Keir Mierlefda69b52013-10-10 00:25:24 -07002// Copyright 2013 Google Inc. All rights reserved.
Keir Mierle8ebb0732012-04-30 23:09:08 -07003// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30// keir@google.com (Keir Mierle)
31//
32// The Problem object is used to build and hold least squares problems.
33
34#ifndef CERES_PUBLIC_PROBLEM_H_
35#define CERES_PUBLIC_PROBLEM_H_
36
37#include <cstddef>
38#include <map>
39#include <set>
40#include <vector>
41
Keir Mierle8ebb0732012-04-30 23:09:08 -070042#include "ceres/internal/macros.h"
43#include "ceres/internal/port.h"
44#include "ceres/internal/scoped_ptr.h"
45#include "ceres/types.h"
Sameer Agarwal509f68c2013-02-20 01:39:03 -080046#include "glog/logging.h"
47
Keir Mierle8ebb0732012-04-30 23:09:08 -070048
49namespace ceres {
50
51class CostFunction;
52class LossFunction;
53class LocalParameterization;
Keir Mierle6196cba2012-06-18 11:03:40 -070054class Solver;
Sameer Agarwal509f68c2013-02-20 01:39:03 -080055struct CRSMatrix;
Keir Mierle8ebb0732012-04-30 23:09:08 -070056
57namespace internal {
58class Preprocessor;
59class ProblemImpl;
60class ParameterBlock;
61class ResidualBlock;
Keir Mierle8ebb0732012-04-30 23:09:08 -070062} // namespace internal
63
Keir Mierle04938ef2013-02-17 12:37:55 -080064// A ResidualBlockId is an opaque handle clients can use to remove residual
65// blocks from a Problem after adding them.
66typedef internal::ResidualBlock* ResidualBlockId;
Keir Mierle8ebb0732012-04-30 23:09:08 -070067
68// A class to represent non-linear least squares problems. Such
69// problems have a cost function that is a sum of error terms (known
70// as "residuals"), where each residual is a function of some subset
71// of the parameters. The cost function takes the form
72//
73// N 1
74// SUM --- loss( || r_i1, r_i2,..., r_ik ||^2 ),
75// i=1 2
76//
77// where
78//
79// r_ij is residual number i, component j; the residual is a
80// function of some subset of the parameters x1...xk. For
81// example, in a structure from motion problem a residual
82// might be the difference between a measured point in an
83// image and the reprojected position for the matching
84// camera, point pair. The residual would have two
85// components, error in x and error in y.
86//
87// loss(y) is the loss function; for example, squared error or
88// Huber L1 loss. If loss(y) = y, then the cost function is
89// non-robustified least squares.
90//
91// This class is specifically designed to address the important subset
92// of "sparse" least squares problems, where each component of the
93// residual depends only on a small number number of parameters, even
94// though the total number of residuals and parameters may be very
95// large. This property affords tremendous gains in scale, allowing
96// efficient solving of large problems that are otherwise
97// inaccessible.
98//
99// The canonical example of a sparse least squares problem is
100// "structure-from-motion" (SFM), where the parameters are points and
101// cameras, and residuals are reprojection errors. Typically a single
102// residual will depend only on 9 parameters (3 for the point, 6 for
103// the camera).
104//
105// To create a least squares problem, use the AddResidualBlock() and
106// AddParameterBlock() methods, documented below. Here is an example least
107// squares problem containing 3 parameter blocks of sizes 3, 4 and 5
108// respectively and two residual terms of size 2 and 6:
109//
110// double x1[] = { 1.0, 2.0, 3.0 };
111// double x2[] = { 1.0, 2.0, 3.0, 5.0 };
112// double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };
113//
114// Problem problem;
115//
116// problem.AddResidualBlock(new MyUnaryCostFunction(...), x1);
117// problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3);
118//
119// Please see cost_function.h for details of the CostFunction object.
120class Problem {
121 public:
122 struct Options {
123 Options()
124 : cost_function_ownership(TAKE_OWNERSHIP),
125 loss_function_ownership(TAKE_OWNERSHIP),
Sameer Agarwal8e1f83c2013-02-15 08:35:40 -0800126 local_parameterization_ownership(TAKE_OWNERSHIP),
Alex Stewart195e4932014-03-26 11:36:11 +0000127 enable_fast_removal(false),
Sameer Agarwal8e1f83c2013-02-15 08:35:40 -0800128 disable_all_safety_checks(false) {}
Keir Mierle8ebb0732012-04-30 23:09:08 -0700129
130 // These flags control whether the Problem object owns the cost
131 // functions, loss functions, and parameterizations passed into
132 // the Problem. If set to TAKE_OWNERSHIP, then the problem object
133 // will delete the corresponding cost or loss functions on
134 // destruction. The destructor is careful to delete the pointers
135 // only once, since sharing cost/loss/parameterizations is
136 // allowed.
137 Ownership cost_function_ownership;
138 Ownership loss_function_ownership;
139 Ownership local_parameterization_ownership;
Sameer Agarwal8e1f83c2013-02-15 08:35:40 -0800140
Alex Stewart195e4932014-03-26 11:36:11 +0000141 // If true, trades memory for faster RemoveResidualBlock() and
142 // RemoveParameterBlock() operations.
Keir Mierle04938ef2013-02-17 12:37:55 -0800143 //
Alex Stewart195e4932014-03-26 11:36:11 +0000144 // By default, RemoveParameterBlock() and RemoveResidualBlock() take time
145 // proportional to the size of the entire problem. If you only ever remove
146 // parameters or residuals from the problem occassionally, this might be
147 // acceptable. However, if you have memory to spare, enable this option to
Keir Mierle04938ef2013-02-17 12:37:55 -0800148 // make RemoveParameterBlock() take time proportional to the number of
Alex Stewart195e4932014-03-26 11:36:11 +0000149 // residual blocks that depend on it, and RemoveResidualBlock() take (on
150 // average) constant time.
151 //
152 // The increase in memory usage is twofold: an additonal hash set per
153 // parameter block containing all the residuals that depend on the parameter
154 // block; and a hash set in the problem containing all residuals.
155 bool enable_fast_removal;
Keir Mierle04938ef2013-02-17 12:37:55 -0800156
157 // By default, Ceres performs a variety of safety checks when constructing
158 // the problem. There is a small but measurable performance penalty to
159 // these checks, typically around 5% of construction time. If you are sure
160 // your problem construction is correct, and 5% of the problem construction
Sameer Agarwal8e1f83c2013-02-15 08:35:40 -0800161 // time is truly an overhead you want to avoid, then you can set
162 // disable_all_safety_checks to true.
163 //
Keir Mierle04938ef2013-02-17 12:37:55 -0800164 // WARNING: Do not set this to true, unless you are absolutely sure of what
Sameer Agarwal8e1f83c2013-02-15 08:35:40 -0800165 // you are doing.
166 bool disable_all_safety_checks;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700167 };
168
169 // The default constructor is equivalent to the
170 // invocation Problem(Problem::Options()).
171 Problem();
172 explicit Problem(const Options& options);
173
174 ~Problem();
175
176 // Add a residual block to the overall cost function. The cost
177 // function carries with it information about the sizes of the
178 // parameter blocks it expects. The function checks that these match
179 // the sizes of the parameter blocks listed in parameter_blocks. The
180 // program aborts if a mismatch is detected. loss_function can be
181 // NULL, in which case the cost of the term is just the squared norm
182 // of the residuals.
183 //
184 // The user has the option of explicitly adding the parameter blocks
185 // using AddParameterBlock. This causes additional correctness
186 // checking; however, AddResidualBlock implicitly adds the parameter
187 // blocks if they are not present, so calling AddParameterBlock
188 // explicitly is not required.
189 //
190 // The Problem object by default takes ownership of the
191 // cost_function and loss_function pointers. These objects remain
192 // live for the life of the Problem object. If the user wishes to
193 // keep control over the destruction of these objects, then they can
194 // do this by setting the corresponding enums in the Options struct.
195 //
196 // Note: Even though the Problem takes ownership of cost_function
197 // and loss_function, it does not preclude the user from re-using
198 // them in another residual block. The destructor takes care to call
199 // delete on each cost_function or loss_function pointer only once,
200 // regardless of how many residual blocks refer to them.
201 //
202 // Example usage:
203 //
204 // double x1[] = {1.0, 2.0, 3.0};
205 // double x2[] = {1.0, 2.0, 5.0, 6.0};
206 // double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};
207 //
208 // Problem problem;
209 //
210 // problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1);
211 // problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1);
212 //
213 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
214 LossFunction* loss_function,
215 const vector<double*>& parameter_blocks);
216
217 // Convenience methods for adding residuals with a small number of
218 // parameters. This is the common case. Instead of specifying the
219 // parameter block arguments as a vector, list them as pointers.
220 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
221 LossFunction* loss_function,
222 double* x0);
223 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
224 LossFunction* loss_function,
225 double* x0, double* x1);
226 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
227 LossFunction* loss_function,
228 double* x0, double* x1, double* x2);
229 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
230 LossFunction* loss_function,
231 double* x0, double* x1, double* x2,
232 double* x3);
233 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
234 LossFunction* loss_function,
235 double* x0, double* x1, double* x2,
236 double* x3, double* x4);
237 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
238 LossFunction* loss_function,
239 double* x0, double* x1, double* x2,
240 double* x3, double* x4, double* x5);
Fisher12626e82012-10-21 14:12:04 -0400241 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
242 LossFunction* loss_function,
243 double* x0, double* x1, double* x2,
244 double* x3, double* x4, double* x5,
245 double* x6);
246 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
247 LossFunction* loss_function,
248 double* x0, double* x1, double* x2,
249 double* x3, double* x4, double* x5,
250 double* x6, double* x7);
251 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
252 LossFunction* loss_function,
253 double* x0, double* x1, double* x2,
254 double* x3, double* x4, double* x5,
255 double* x6, double* x7, double* x8);
256 ResidualBlockId AddResidualBlock(CostFunction* cost_function,
257 LossFunction* loss_function,
258 double* x0, double* x1, double* x2,
259 double* x3, double* x4, double* x5,
260 double* x6, double* x7, double* x8,
261 double* x9);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700262
263 // Add a parameter block with appropriate size to the problem.
264 // Repeated calls with the same arguments are ignored. Repeated
265 // calls with the same double pointer but a different size results
266 // in undefined behaviour.
267 void AddParameterBlock(double* values, int size);
268
269 // Add a parameter block with appropriate size and parameterization
270 // to the problem. Repeated calls with the same arguments are
271 // ignored. Repeated calls with the same double pointer but a
272 // different size results in undefined behaviour.
273 void AddParameterBlock(double* values,
274 int size,
275 LocalParameterization* local_parameterization);
276
Keir Mierle04938ef2013-02-17 12:37:55 -0800277 // Remove a parameter block from the problem. The parameterization of the
278 // parameter block, if it exists, will persist until the deletion of the
279 // problem (similar to cost/loss functions in residual block removal). Any
280 // residual blocks that depend on the parameter are also removed, as
281 // described above in RemoveResidualBlock().
282 //
Alex Stewart195e4932014-03-26 11:36:11 +0000283 // If Problem::Options::enable_fast_removal is true, then the
Keir Mierle04938ef2013-02-17 12:37:55 -0800284 // removal is fast (almost constant time). Otherwise, removing a parameter
285 // block will incur a scan of the entire Problem object.
286 //
287 // WARNING: Removing a residual or parameter block will destroy the implicit
288 // ordering, rendering the jacobian or residuals returned from the solver
289 // uninterpretable. If you depend on the evaluated jacobian, do not use
290 // remove! This may change in a future release.
291 void RemoveParameterBlock(double* values);
292
293 // Remove a residual block from the problem. Any parameters that the residual
294 // block depends on are not removed. The cost and loss functions for the
295 // residual block will not get deleted immediately; won't happen until the
296 // problem itself is deleted.
297 //
298 // WARNING: Removing a residual or parameter block will destroy the implicit
299 // ordering, rendering the jacobian or residuals returned from the solver
300 // uninterpretable. If you depend on the evaluated jacobian, do not use
301 // remove! This may change in a future release.
302 void RemoveResidualBlock(ResidualBlockId residual_block);
303
Keir Mierle8ebb0732012-04-30 23:09:08 -0700304 // Hold the indicated parameter block constant during optimization.
305 void SetParameterBlockConstant(double* values);
306
Sameer Agarwala482ab82014-02-18 22:24:03 -0800307 // Allow the indicated parameter block to vary during optimization.
Keir Mierle8ebb0732012-04-30 23:09:08 -0700308 void SetParameterBlockVariable(double* values);
309
310 // Set the local parameterization for one of the parameter blocks.
311 // The local_parameterization is owned by the Problem by default. It
312 // is acceptable to set the same parameterization for multiple
313 // parameters; the destructor is careful to delete local
314 // parameterizations only once. The local parameterization can only
315 // be set once per parameter, and cannot be changed once set.
316 void SetParameterization(double* values,
317 LocalParameterization* local_parameterization);
318
Sameer Agarwalf949bab2014-02-18 10:11:02 -0800319 // Get the local parameterization object associated with this
320 // parameter block. If there is no parameterization object
321 // associated then NULL is returned.
322 const LocalParameterization* GetParameterization(double* values) const;
323
Sameer Agarwala482ab82014-02-18 22:24:03 -0800324 // Set the lower/upper bound for the parameter with position "index".
325 void SetParameterLowerBound(double* values, int index, double lower_bound);
326 void SetParameterUpperBound(double* values, int index, double upper_bound);
327
Keir Mierle8ebb0732012-04-30 23:09:08 -0700328 // Number of parameter blocks in the problem. Always equals
329 // parameter_blocks().size() and parameter_block_sizes().size().
330 int NumParameterBlocks() const;
331
332 // The size of the parameter vector obtained by summing over the
333 // sizes of all the parameter blocks.
334 int NumParameters() const;
335
336 // Number of residual blocks in the problem. Always equals
337 // residual_blocks().size().
338 int NumResidualBlocks() const;
339
340 // The size of the residual vector obtained by summing over the
341 // sizes of all of the residual blocks.
342 int NumResiduals() const;
343
Sameer Agarwal3d954692013-04-18 14:54:55 -0700344 // The size of the parameter block.
Sameer Agarwal02706c12013-05-12 22:07:55 -0700345 int ParameterBlockSize(const double* values) const;
Sameer Agarwal3d954692013-04-18 14:54:55 -0700346
347 // The size of local parameterization for the parameter block. If
348 // there is no local parameterization associated with this parameter
Sameer Agarwal7823cf22013-04-18 16:13:56 -0700349 // block, then ParameterBlockLocalSize = ParameterBlockSize.
Sameer Agarwal02706c12013-05-12 22:07:55 -0700350 int ParameterBlockLocalSize(const double* values) const;
Sameer Agarwal3d954692013-04-18 14:54:55 -0700351
Sameer Agarwal5ecb1c32014-04-01 09:20:35 -0700352 // Is the given parameter block present in this problem or not?
353 bool HasParameterBlock(const double* values) const;
354
Sameer Agarwal3d954692013-04-18 14:54:55 -0700355 // Fills the passed parameter_blocks vector with pointers to the
356 // parameter blocks currently in the problem. After this call,
357 // parameter_block.size() == NumParameterBlocks.
358 void GetParameterBlocks(vector<double*>* parameter_blocks) const;
359
Keir Mierlefda69b52013-10-10 00:25:24 -0700360 // Fills the passed residual_blocks vector with pointers to the
361 // residual blocks currently in the problem. After this call,
362 // residual_blocks.size() == NumResidualBlocks.
363 void GetResidualBlocks(vector<ResidualBlockId>* residual_blocks) const;
364
365 // Get all the parameter blocks that depend on the given residual block.
366 void GetParameterBlocksForResidualBlock(
367 const ResidualBlockId residual_block,
368 vector<double*>* parameter_blocks) const;
369
370 // Get all the residual blocks that depend on the given parameter block.
371 //
Alex Stewart195e4932014-03-26 11:36:11 +0000372 // If Problem::Options::enable_fast_removal is true, then
Keir Mierlefda69b52013-10-10 00:25:24 -0700373 // getting the residual blocks is fast and depends only on the number of
374 // residual blocks. Otherwise, getting the residual blocks for a parameter
375 // block will incur a scan of the entire Problem object.
376 void GetResidualBlocksForParameterBlock(
377 const double* values,
378 vector<ResidualBlockId>* residual_blocks) const;
379
Sameer Agarwal509f68c2013-02-20 01:39:03 -0800380 // Options struct to control Problem::Evaluate.
381 struct EvaluateOptions {
382 EvaluateOptions()
Sameer Agarwal039ff072013-02-26 09:15:39 -0800383 : apply_loss_function(true),
384 num_threads(1) {
Sameer Agarwal509f68c2013-02-20 01:39:03 -0800385 }
386
387 // The set of parameter blocks for which evaluation should be
388 // performed. This vector determines the order that parameter
389 // blocks occur in the gradient vector and in the columns of the
390 // jacobian matrix. If parameter_blocks is empty, then it is
391 // assumed to be equal to vector containing ALL the parameter
392 // blocks. Generally speaking the parameter blocks will occur in
393 // the order in which they were added to the problem. But, this
394 // may change if the user removes any parameter blocks from the
395 // problem.
396 //
397 // NOTE: This vector should contain the same pointers as the ones
Sameer Agarwal931c3092013-02-25 09:46:21 -0800398 // used to add parameter blocks to the Problem. These parameter
Sameer Agarwal509f68c2013-02-20 01:39:03 -0800399 // block should NOT point to new memory locations. Bad things will
400 // happen otherwise.
401 vector<double*> parameter_blocks;
402
403 // The set of residual blocks to evaluate. This vector determines
404 // the order in which the residuals occur, and how the rows of the
405 // jacobian are ordered. If residual_blocks is empty, then it is
406 // assumed to be equal to the vector containing all the residual
407 // blocks. If this vector is empty, then it is assumed to be equal
408 // to a vector containing ALL the residual blocks. Generally
409 // speaking the residual blocks will occur in the order in which
410 // they were added to the problem. But, this may change if the
411 // user removes any residual blocks from the problem.
412 vector<ResidualBlockId> residual_blocks;
Sameer Agarwal039ff072013-02-26 09:15:39 -0800413
414 // Even though the residual blocks in the problem may contain loss
415 // functions, setting apply_loss_function to false will turn off
416 // the application of the loss function to the output of the cost
417 // function. This is of use for example if the user wishes to
418 // analyse the solution quality by studying the distribution of
419 // residuals before and after the solve.
420 bool apply_loss_function;
421
Sameer Agarwal509f68c2013-02-20 01:39:03 -0800422 int num_threads;
423 };
424
425 // Evaluate Problem. Any of the output pointers can be NULL. Which
426 // residual blocks and parameter blocks are used is controlled by
427 // the EvaluateOptions struct above.
428 //
429 // Note 1: The evaluation will use the values stored in the memory
430 // locations pointed to by the parameter block pointers used at the
431 // time of the construction of the problem. i.e.,
432 //
433 // Problem problem;
434 // double x = 1;
Sameer Agarwal5e7ce8a2013-03-06 11:38:41 -0800435 // problem.AddResidualBlock(new MyCostFunction, NULL, &x);
Sameer Agarwal509f68c2013-02-20 01:39:03 -0800436 //
437 // double cost = 0.0;
438 // problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
439 //
440 // The cost is evaluated at x = 1. If you wish to evaluate the
441 // problem at x = 2, then
442 //
443 // x = 2;
444 // problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
445 //
446 // is the way to do so.
447 //
448 // Note 2: If no local parameterizations are used, then the size of
449 // the gradient vector (and the number of columns in the jacobian)
450 // is the sum of the sizes of all the parameter blocks. If a
451 // parameter block has a local parameterization, then it contributes
Sameer Agarwal931c3092013-02-25 09:46:21 -0800452 // "LocalSize" entries to the gradient vector (and the number of
Sameer Agarwal509f68c2013-02-20 01:39:03 -0800453 // columns in the jacobian).
454 bool Evaluate(const EvaluateOptions& options,
455 double* cost,
456 vector<double>* residuals,
457 vector<double>* gradient,
458 CRSMatrix* jacobian);
459
Keir Mierle8ebb0732012-04-30 23:09:08 -0700460 private:
Keir Mierle6196cba2012-06-18 11:03:40 -0700461 friend class Solver;
Sameer Agarwal02706c12013-05-12 22:07:55 -0700462 friend class Covariance;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700463 internal::scoped_ptr<internal::ProblemImpl> problem_impl_;
Sameer Agarwal237d6592012-05-30 20:34:49 -0700464 CERES_DISALLOW_COPY_AND_ASSIGN(Problem);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700465};
466
467} // namespace ceres
468
469#endif // CERES_PUBLIC_PROBLEM_H_