Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/trust_region_minimizer.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cstdlib> |
| 35 | #include <cmath> |
| 36 | #include <cstring> |
| 37 | #include <string> |
| 38 | #include <vector> |
| 39 | #include <glog/logging.h> |
| 40 | |
| 41 | #include "Eigen/Core" |
| 42 | #include "ceres/array_utils.h" |
| 43 | #include "ceres/evaluator.h" |
| 44 | #include "ceres/linear_least_squares_problems.h" |
| 45 | #include "ceres/internal/eigen.h" |
| 46 | #include "ceres/internal/scoped_ptr.h" |
| 47 | #include "ceres/sparse_matrix.h" |
| 48 | #include "ceres/trust_region_strategy.h" |
| 49 | #include "ceres/types.h" |
| 50 | |
| 51 | namespace ceres { |
| 52 | namespace internal { |
| 53 | namespace { |
| 54 | // Small constant for various floating point issues. |
| 55 | const double kEpsilon = 1e-12; |
| 56 | } // namespace |
| 57 | |
| 58 | // Execute the list of IterationCallbacks sequentially. If any one of |
| 59 | // the callbacks does not return SOLVER_CONTINUE, then stop and return |
| 60 | // its status. |
| 61 | CallbackReturnType TrustRegionMinimizer::RunCallbacks( |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 62 | const IterationSummary& iteration_summary) { |
| 63 | for (int i = 0; i < options_.callbacks.size(); ++i) { |
| 64 | const CallbackReturnType status = |
| 65 | (*options_.callbacks[i])(iteration_summary); |
| 66 | if (status != SOLVER_CONTINUE) { |
| 67 | return status; |
| 68 | } |
| 69 | } |
| 70 | return SOLVER_CONTINUE; |
| 71 | } |
| 72 | |
| 73 | // Compute a scaling vector that is used to improve the conditioning |
| 74 | // of the Jacobian. |
| 75 | void TrustRegionMinimizer::EstimateScale(const SparseMatrix& jacobian, |
| 76 | double* scale) const { |
| 77 | jacobian.SquaredColumnNorm(scale); |
| 78 | for (int i = 0; i < jacobian.num_cols(); ++i) { |
| 79 | scale[i] = 1.0 / (kEpsilon + sqrt(scale[i])); |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | void TrustRegionMinimizer::Init(const Minimizer::Options& options) { |
| 84 | options_ = options; |
| 85 | sort(options_.lsqp_iterations_to_dump.begin(), |
| 86 | options_.lsqp_iterations_to_dump.end()); |
| 87 | } |
| 88 | |
| 89 | bool TrustRegionMinimizer::MaybeDumpLinearLeastSquaresProblem( |
| 90 | const int iteration, |
| 91 | const SparseMatrix* jacobian, |
| 92 | const double* residuals, |
| 93 | const double* step) const { |
| 94 | // TODO(sameeragarwal): Since the use of trust_region_radius has |
| 95 | // moved inside TrustRegionStrategy, its not clear how we dump the |
| 96 | // regularization vector/matrix anymore. |
| 97 | // |
| 98 | // Doing this right requires either an API change to the |
| 99 | // TrustRegionStrategy and/or how LinearLeastSquares problems are |
| 100 | // stored on disk. |
| 101 | // |
| 102 | // For now, we will just not dump the regularizer. |
| 103 | return (!binary_search(options_.lsqp_iterations_to_dump.begin(), |
| 104 | options_.lsqp_iterations_to_dump.end(), |
| 105 | iteration) || |
| 106 | DumpLinearLeastSquaresProblem(options_.lsqp_dump_directory, |
| 107 | iteration, |
| 108 | options_.lsqp_dump_format_type, |
| 109 | jacobian, |
| 110 | NULL, |
| 111 | residuals, |
| 112 | step, |
| 113 | options_.num_eliminate_blocks)); |
| 114 | } |
| 115 | |
| 116 | void TrustRegionMinimizer::Minimize(const Minimizer::Options& options, |
| 117 | double* parameters, |
| 118 | Solver::Summary* summary) { |
| 119 | time_t start_time = time(NULL); |
| 120 | time_t iteration_start_time = start_time; |
| 121 | Init(options); |
| 122 | |
| 123 | summary->termination_type = NO_CONVERGENCE; |
| 124 | summary->num_successful_steps = 0; |
| 125 | summary->num_unsuccessful_steps = 0; |
| 126 | |
| 127 | Evaluator* evaluator = CHECK_NOTNULL(options_.evaluator); |
| 128 | SparseMatrix* jacobian = CHECK_NOTNULL(options_.jacobian); |
| 129 | TrustRegionStrategy* strategy = CHECK_NOTNULL(options_.trust_region_strategy); |
| 130 | |
| 131 | const int num_parameters = evaluator->NumParameters(); |
| 132 | const int num_effective_parameters = evaluator->NumEffectiveParameters(); |
| 133 | const int num_residuals = evaluator->NumResiduals(); |
| 134 | |
| 135 | VectorRef x(parameters, num_parameters); |
| 136 | double x_norm = x.norm(); |
| 137 | |
| 138 | Vector residuals(num_residuals); |
| 139 | Vector trust_region_step(num_effective_parameters); |
| 140 | Vector delta(num_effective_parameters); |
| 141 | Vector x_plus_delta(num_parameters); |
| 142 | Vector gradient(num_effective_parameters); |
| 143 | Vector model_residuals(num_residuals); |
| 144 | Vector scale(num_effective_parameters); |
| 145 | |
| 146 | IterationSummary iteration_summary; |
| 147 | iteration_summary.iteration = 0; |
| 148 | iteration_summary.step_is_valid=false; |
| 149 | iteration_summary.step_is_successful=false; |
| 150 | iteration_summary.cost = summary->initial_cost; |
| 151 | iteration_summary.cost_change = 0.0; |
| 152 | iteration_summary.gradient_max_norm = 0.0; |
| 153 | iteration_summary.step_norm = 0.0; |
| 154 | iteration_summary.relative_decrease = 0.0; |
| 155 | iteration_summary.trust_region_radius = strategy->Radius(); |
| 156 | // TODO(sameeragarwal): Rename eta to linear_solver_accuracy or |
| 157 | // something similar across the board. |
| 158 | iteration_summary.eta = options_.eta; |
| 159 | iteration_summary.linear_solver_iterations = 0; |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 160 | iteration_summary.step_solver_time_in_seconds = 0; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 161 | |
| 162 | // Do initial cost and Jacobian evaluation. |
| 163 | double cost = 0.0; |
| 164 | if (!evaluator->Evaluate(x.data(), &cost, residuals.data(), jacobian)) { |
| 165 | LOG(WARNING) << "Terminating: Residual and Jacobian evaluation failed."; |
| 166 | summary->termination_type = NUMERICAL_FAILURE; |
| 167 | return; |
| 168 | } |
| 169 | |
| 170 | // Compute the fixed part of the cost. |
| 171 | // |
| 172 | // This is a poor way to do this computation. Even if fixed_cost is |
| 173 | // zero, because we are subtracting two possibly large numbers, we |
| 174 | // are depending on exact cancellation to give us a zero here. But |
| 175 | // initial_cost and cost have been computed by two different |
| 176 | // evaluators. One which runs on the whole problem (in |
| 177 | // solver_impl.cc) in single threaded mode and another which runs |
| 178 | // here on the reduced problem, so fixed_cost can (and does) contain |
| 179 | // some numerical garbage with a relative magnitude of 1e-14. |
| 180 | // |
| 181 | // The right way to do this, would be to compute the fixed cost on |
| 182 | // just the set of residual blocks which are held constant and were |
| 183 | // removed from the original problem when the reduced problem was |
| 184 | // constructed. |
| 185 | summary->fixed_cost = summary->initial_cost - cost; |
| 186 | |
| 187 | gradient.setZero(); |
| 188 | jacobian->LeftMultiply(residuals.data(), gradient.data()); |
| 189 | iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); |
| 190 | |
| 191 | if (options_.jacobi_scaling) { |
| 192 | EstimateScale(*jacobian, scale.data()); |
| 193 | jacobian->ScaleColumns(scale.data()); |
| 194 | } else { |
| 195 | scale.setOnes(); |
| 196 | } |
| 197 | |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 198 | // The initial gradient max_norm is bounded from below so that we do |
| 199 | // not divide by zero. |
| 200 | const double gradient_max_norm_0 = |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 201 | max(iteration_summary.gradient_max_norm, kEpsilon); |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 202 | const double absolute_gradient_tolerance = |
| 203 | options_.gradient_tolerance * gradient_max_norm_0; |
| 204 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 205 | if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { |
| 206 | summary->termination_type = GRADIENT_TOLERANCE; |
| 207 | VLOG(1) << "Terminating: Gradient tolerance reached." |
| 208 | << "Relative gradient max norm: " |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 209 | << iteration_summary.gradient_max_norm / gradient_max_norm_0 |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 210 | << " <= " << options_.gradient_tolerance; |
| 211 | return; |
| 212 | } |
| 213 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 214 | iteration_summary.iteration_time_in_seconds = |
| 215 | time(NULL) - iteration_start_time; |
| 216 | iteration_summary.cumulative_time_in_seconds = time(NULL) - start_time + |
| 217 | summary->preprocessor_time_in_seconds; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 218 | summary->iterations.push_back(iteration_summary); |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 219 | |
| 220 | // Call the various callbacks. |
Keir Mierle | f747183 | 2012-06-14 11:31:53 -0700 | [diff] [blame] | 221 | switch (RunCallbacks(iteration_summary)) { |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 222 | case SOLVER_TERMINATE_SUCCESSFULLY: |
| 223 | summary->termination_type = USER_SUCCESS; |
| 224 | VLOG(1) << "Terminating: User callback returned USER_SUCCESS."; |
| 225 | return; |
| 226 | case SOLVER_ABORT: |
| 227 | summary->termination_type = USER_ABORT; |
| 228 | VLOG(1) << "Terminating: User callback returned USER_ABORT."; |
| 229 | return; |
| 230 | case SOLVER_CONTINUE: |
| 231 | break; |
| 232 | default: |
| 233 | LOG(FATAL) << "Unknown type of user callback status"; |
| 234 | } |
| 235 | |
| 236 | int num_consecutive_invalid_steps = 0; |
| 237 | while (true) { |
| 238 | iteration_start_time = time(NULL); |
| 239 | if (iteration_summary.iteration >= options_.max_num_iterations) { |
| 240 | summary->termination_type = NO_CONVERGENCE; |
| 241 | VLOG(1) << "Terminating: Maximum number of iterations reached."; |
| 242 | break; |
| 243 | } |
| 244 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 245 | const double total_solver_time = iteration_start_time - start_time + |
| 246 | summary->preprocessor_time_in_seconds; |
| 247 | if (total_solver_time >= options_.max_solver_time_in_seconds) { |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 248 | summary->termination_type = NO_CONVERGENCE; |
| 249 | VLOG(1) << "Terminating: Maximum solver time reached."; |
| 250 | break; |
| 251 | } |
| 252 | |
| 253 | iteration_summary = IterationSummary(); |
| 254 | iteration_summary = summary->iterations.back(); |
| 255 | iteration_summary.iteration = summary->iterations.back().iteration + 1; |
| 256 | iteration_summary.step_is_valid = false; |
| 257 | iteration_summary.step_is_successful = false; |
| 258 | |
| 259 | const time_t strategy_start_time = time(NULL); |
| 260 | TrustRegionStrategy::PerSolveOptions per_solve_options; |
| 261 | per_solve_options.eta = options_.eta; |
| 262 | LinearSolver::Summary strategy_summary = |
| 263 | strategy->ComputeStep(per_solve_options, |
| 264 | jacobian, |
| 265 | residuals.data(), |
| 266 | trust_region_step.data()); |
| 267 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 268 | iteration_summary.step_solver_time_in_seconds = |
| 269 | time(NULL) - strategy_start_time; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 270 | iteration_summary.linear_solver_iterations = |
| 271 | strategy_summary.num_iterations; |
| 272 | |
| 273 | if (!MaybeDumpLinearLeastSquaresProblem(iteration_summary.iteration, |
| 274 | jacobian, |
| 275 | residuals.data(), |
| 276 | trust_region_step.data())) { |
| 277 | LOG(FATAL) << "Tried writing linear least squares problem: " |
| 278 | << options.lsqp_dump_directory << "but failed."; |
| 279 | } |
| 280 | |
| 281 | double new_model_cost = 0.0; |
| 282 | if (strategy_summary.termination_type != FAILURE) { |
| 283 | // new_model_cost = 1/2 |J * step - f|^2 |
| 284 | model_residuals = -residuals; |
| 285 | jacobian->RightMultiply(trust_region_step.data(), model_residuals.data()); |
| 286 | new_model_cost = model_residuals.squaredNorm() / 2.0; |
| 287 | |
| 288 | // In exact arithmetic, this would never be the case. But poorly |
| 289 | // conditioned matrices can give rise to situations where the |
| 290 | // new_model_cost can actually be larger than half the squared |
| 291 | // norm of the residual vector. We allow for small tolerance |
| 292 | // around cost and beyond that declare the step to be invalid. |
| 293 | if (cost < (new_model_cost - kEpsilon)) { |
| 294 | VLOG(1) << "Invalid step: current_cost: " << cost |
| 295 | << " new_model_cost " << new_model_cost; |
| 296 | } else { |
| 297 | iteration_summary.step_is_valid = true; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | if (!iteration_summary.step_is_valid) { |
| 302 | // Invalid steps can happen due to a number of reasons, and we |
| 303 | // allow a limited number of successive failures, and return with |
| 304 | // NUMERICAL_FAILURE if this limit is exceeded. |
| 305 | if (++num_consecutive_invalid_steps >= |
| 306 | options_.max_num_consecutive_invalid_steps) { |
| 307 | summary->termination_type = NUMERICAL_FAILURE; |
| 308 | LOG(WARNING) << "Terminating. Number of successive invalid steps more " |
| 309 | << "than " |
| 310 | << "Solver::Options::max_num_consecutive_invalid_steps: " |
| 311 | << options_.max_num_consecutive_invalid_steps; |
| 312 | return; |
| 313 | } |
| 314 | |
| 315 | // We are going to try and reduce the trust region radius and |
| 316 | // solve again. To do this, we are going to treat this iteration |
| 317 | // as an unsuccessful iteration. Since the various callbacks are |
| 318 | // still executed, we are going to fill the iteration summary |
| 319 | // with data that assumes a step of length zero and no progress. |
| 320 | iteration_summary.cost = cost; |
| 321 | iteration_summary.cost_change = 0.0; |
| 322 | iteration_summary.gradient_max_norm = |
| 323 | summary->iterations.back().gradient_max_norm; |
| 324 | iteration_summary.step_norm = 0.0; |
| 325 | iteration_summary.relative_decrease = 0.0; |
| 326 | iteration_summary.eta = options_.eta; |
| 327 | } else { |
| 328 | // The step is numerically valid, so now we can judge its quality. |
| 329 | num_consecutive_invalid_steps = 0; |
| 330 | |
| 331 | // We allow some slop around 0, and clamp the model_cost_change |
| 332 | // at kEpsilon from below. |
| 333 | // |
| 334 | // There is probably a better way to do this, as it is going to |
| 335 | // create problems for problems where the objective function is |
| 336 | // kEpsilon close to zero. |
| 337 | const double model_cost_change = max(kEpsilon, cost - new_model_cost); |
| 338 | |
| 339 | // Undo the Jacobian column scaling. |
| 340 | delta = -(trust_region_step.array() * scale.array()).matrix(); |
| 341 | iteration_summary.step_norm = delta.norm(); |
| 342 | |
| 343 | // Convergence based on parameter_tolerance. |
| 344 | const double step_size_tolerance = options_.parameter_tolerance * |
| 345 | (x_norm + options_.parameter_tolerance); |
| 346 | if (iteration_summary.step_norm <= step_size_tolerance) { |
| 347 | VLOG(1) << "Terminating. Parameter tolerance reached. " |
| 348 | << "relative step_norm: " |
| 349 | << iteration_summary.step_norm / |
| 350 | (x_norm + options_.parameter_tolerance) |
| 351 | << " <= " << options_.parameter_tolerance; |
| 352 | summary->termination_type = PARAMETER_TOLERANCE; |
| 353 | return; |
| 354 | } |
| 355 | |
| 356 | if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data())) { |
| 357 | summary->termination_type = NUMERICAL_FAILURE; |
| 358 | LOG(WARNING) << "Terminating. Failed to compute " |
| 359 | << "Plus(x, delta, x_plus_delta)."; |
| 360 | return; |
| 361 | } |
| 362 | |
| 363 | // Try this step. |
| 364 | double new_cost; |
| 365 | if (!evaluator->Evaluate(x_plus_delta.data(), &new_cost, NULL, NULL)) { |
| 366 | summary->termination_type = NUMERICAL_FAILURE; |
| 367 | LOG(WARNING) << "Terminating: Cost evaluation failed."; |
| 368 | return; |
| 369 | } |
| 370 | |
Sameer Agarwal | d28b3c8 | 2012-06-05 21:50:31 -0700 | [diff] [blame] | 371 | VLOG(2) << "old cost: " << cost << " new cost: " << new_cost; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 372 | iteration_summary.cost_change = cost - new_cost; |
| 373 | const double absolute_function_tolerance = |
| 374 | options_.function_tolerance * cost; |
| 375 | if (fabs(iteration_summary.cost_change) < absolute_function_tolerance) { |
| 376 | VLOG(1) << "Terminating. Function tolerance reached. " |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 377 | << "|cost_change|/cost: " |
| 378 | << fabs(iteration_summary.cost_change) / cost |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 379 | << " <= " << options_.function_tolerance; |
| 380 | summary->termination_type = FUNCTION_TOLERANCE; |
| 381 | return; |
| 382 | } |
| 383 | |
| 384 | iteration_summary.relative_decrease = |
| 385 | iteration_summary.cost_change / model_cost_change; |
| 386 | iteration_summary.step_is_successful = |
| 387 | iteration_summary.relative_decrease > options_.min_relative_decrease; |
| 388 | } |
| 389 | |
| 390 | if (iteration_summary.step_is_successful) { |
| 391 | ++summary->num_successful_steps; |
| 392 | strategy->StepAccepted(iteration_summary.relative_decrease); |
| 393 | x = x_plus_delta; |
| 394 | x_norm = x.norm(); |
| 395 | // Step looks good, evaluate the residuals and Jacobian at this |
| 396 | // point. |
| 397 | if (!evaluator->Evaluate(x.data(), &cost, residuals.data(), jacobian)) { |
| 398 | summary->termination_type = NUMERICAL_FAILURE; |
| 399 | LOG(WARNING) << "Terminating: Residual and Jacobian evaluation failed."; |
| 400 | return; |
| 401 | } |
| 402 | |
| 403 | gradient.setZero(); |
| 404 | jacobian->LeftMultiply(residuals.data(), gradient.data()); |
| 405 | iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); |
| 406 | |
| 407 | if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { |
| 408 | summary->termination_type = GRADIENT_TOLERANCE; |
| 409 | VLOG(1) << "Terminating: Gradient tolerance reached." |
| 410 | << "Relative gradient max norm: " |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 411 | << iteration_summary.gradient_max_norm / gradient_max_norm_0 |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 412 | << " <= " << options_.gradient_tolerance; |
| 413 | return; |
| 414 | } |
| 415 | |
| 416 | if (options_.jacobi_scaling) { |
| 417 | jacobian->ScaleColumns(scale.data()); |
| 418 | } |
| 419 | } else { |
| 420 | ++summary->num_unsuccessful_steps; |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 421 | if (iteration_summary.step_is_valid) { |
| 422 | strategy->StepRejected(iteration_summary.relative_decrease); |
| 423 | } else { |
| 424 | strategy->StepIsInvalid(); |
| 425 | } |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 426 | } |
| 427 | |
| 428 | iteration_summary.cost = cost + summary->fixed_cost; |
| 429 | iteration_summary.trust_region_radius = strategy->Radius(); |
| 430 | if (iteration_summary.trust_region_radius < |
| 431 | options_.min_trust_region_radius) { |
| 432 | summary->termination_type = PARAMETER_TOLERANCE; |
| 433 | VLOG(1) << "Termination. Minimum trust region radius reached."; |
| 434 | return; |
| 435 | } |
| 436 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 437 | iteration_summary.iteration_time_in_seconds = |
| 438 | time(NULL) - iteration_start_time; |
| 439 | iteration_summary.cumulative_time_in_seconds = time(NULL) - start_time + |
| 440 | summary->preprocessor_time_in_seconds; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 441 | summary->iterations.push_back(iteration_summary); |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 442 | |
Keir Mierle | f747183 | 2012-06-14 11:31:53 -0700 | [diff] [blame] | 443 | switch (RunCallbacks(iteration_summary)) { |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 444 | case SOLVER_TERMINATE_SUCCESSFULLY: |
| 445 | summary->termination_type = USER_SUCCESS; |
| 446 | VLOG(1) << "Terminating: User callback returned USER_SUCCESS."; |
| 447 | return; |
| 448 | case SOLVER_ABORT: |
| 449 | summary->termination_type = USER_ABORT; |
| 450 | VLOG(1) << "Terminating: User callback returned USER_ABORT."; |
| 451 | return; |
| 452 | case SOLVER_CONTINUE: |
| 453 | break; |
| 454 | default: |
| 455 | LOG(FATAL) << "Unknown type of user callback status"; |
| 456 | } |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | |
| 461 | } // namespace internal |
| 462 | } // namespace ceres |