blob: 7c0fa79ad0b5e47e0b915ffb538778c17cf7d702 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
Sameer Agarwal2fc0ed62013-01-15 11:34:10 -080031// Create CostFunctions as needed by the least squares framework, with
32// Jacobians computed via automatic differentiation. For more
33// information on automatic differentation, see the wikipedia article
34// at http://en.wikipedia.org/wiki/Automatic_differentiation
Keir Mierle8ebb0732012-04-30 23:09:08 -070035//
36// To get an auto differentiated cost function, you must define a class with a
37// templated operator() (a functor) that computes the cost function in terms of
38// the template parameter T. The autodiff framework substitutes appropriate
39// "jet" objects for T in order to compute the derivative when necessary, but
40// this is hidden, and you should write the function as if T were a scalar type
41// (e.g. a double-precision floating point number).
42//
Sameer Agarwal01fb8a32013-04-30 17:37:13 -070043// The function must write the computed value in the last argument
44// (the only non-const one) and return true to indicate
45// success. Please see cost_function.h for details on how the return
46// value maybe used to impose simple constraints on the parameter
47// block.
Keir Mierle8ebb0732012-04-30 23:09:08 -070048//
49// For example, consider a scalar error e = k - x'y, where both x and y are
50// two-dimensional column vector parameters, the prime sign indicates
51// transposition, and k is a constant. The form of this error, which is the
52// difference between a constant and an expression, is a common pattern in least
53// squares problems. For example, the value x'y might be the model expectation
54// for a series of measurements, where there is an instance of the cost function
55// for each measurement k.
56//
57// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
58// the squaring is implicitly done by the optimization framework.
59//
60// To write an auto-differentiable cost function for the above model, first
61// define the object
62//
Sameer Agarwal2fc0ed62013-01-15 11:34:10 -080063// class MyScalarCostFunctor {
64// MyScalarCostFunctor(double k): k_(k) {}
Keir Mierle8ebb0732012-04-30 23:09:08 -070065//
66// template <typename T>
67// bool operator()(const T* const x , const T* const y, T* e) const {
68// e[0] = T(k_) - x[0] * y[0] + x[1] * y[1];
69// return true;
70// }
71//
72// private:
73// double k_;
74// };
75//
76// Note that in the declaration of operator() the input parameters x and y come
77// first, and are passed as const pointers to arrays of T. If there were three
78// input parameters, then the third input parameter would come after y. The
79// output is always the last parameter, and is also a pointer to an array. In
80// the example above, e is a scalar, so only e[0] is set.
81//
82// Then given this class definition, the auto differentiated cost function for
83// it can be constructed as follows.
84//
85// CostFunction* cost_function
Sameer Agarwal2fc0ed62013-01-15 11:34:10 -080086// = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
87// new MyScalarCostFunctor(1.0)); ^ ^ ^
88// | | |
89// Dimension of residual -----+ | |
90// Dimension of x ---------------+ |
91// Dimension of y ------------------+
Keir Mierle8ebb0732012-04-30 23:09:08 -070092//
93// In this example, there is usually an instance for each measumerent of k.
94//
95// In the instantiation above, the template parameters following
Sameer Agarwal2fc0ed62013-01-15 11:34:10 -080096// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing a
Keir Mierle8ebb0732012-04-30 23:09:08 -070097// 1-dimensional output from two arguments, both 2-dimensional.
98//
Sameer Agarwal3a2158d2013-10-03 07:12:14 -070099// AutoDiffCostFunction also supports cost functions with a
Keir Mierlefdeb5772012-05-09 07:38:07 -0700100// runtime-determined number of residuals. For example:
101//
102// CostFunction* cost_function
Sameer Agarwal2fc0ed62013-01-15 11:34:10 -0800103// = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
104// new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
105// runtime_number_of_residuals); <----+ | | |
106// | | | |
107// | | | |
108// Actual number of residuals ------+ | | |
109// Indicate dynamic number of residuals --------+ | |
110// Dimension of x ------------------------------------+ |
111// Dimension of y ---------------------------------------+
Keir Mierlefdeb5772012-05-09 07:38:07 -0700112//
Sameer Agarwal3a2158d2013-10-03 07:12:14 -0700113// The framework can currently accommodate cost functions of up to 10
114// independent variables, and there is no limit on the dimensionality
115// of each of them.
Keir Mierle8ebb0732012-04-30 23:09:08 -0700116//
117// WARNING #1: Since the functor will get instantiated with different types for
118// T, you must to convert from other numeric types to T before mixing
119// computations with other variables of type T. In the example above, this is
120// seen where instead of using k_ directly, k_ is wrapped with T(k_).
121//
122// WARNING #2: A common beginner's error when first using autodiff cost
123// functions is to get the sizing wrong. In particular, there is a tendency to
124// set the template parameters to (dimension of residual, number of parameters)
125// instead of passing a dimension parameter for *every parameter*. In the
Sameer Agarwal2fc0ed62013-01-15 11:34:10 -0800126// example above, that would be <MyScalarCostFunctor, 1, 2>, which is missing
Keir Mierle8ebb0732012-04-30 23:09:08 -0700127// the last '2' argument. Please be careful when setting the size parameters.
128
129#ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
130#define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
131
Keir Mierle8ebb0732012-04-30 23:09:08 -0700132#include "ceres/internal/autodiff.h"
133#include "ceres/internal/scoped_ptr.h"
134#include "ceres/sized_cost_function.h"
Keir Mierlefdeb5772012-05-09 07:38:07 -0700135#include "ceres/types.h"
Sameer Agarwala1eaa262013-05-09 10:02:24 -0700136#include "glog/logging.h"
Keir Mierle8ebb0732012-04-30 23:09:08 -0700137
138namespace ceres {
139
Keir Mierlefdeb5772012-05-09 07:38:07 -0700140// A cost function which computes the derivative of the cost with respect to
141// the parameters (a.k.a. the jacobian) using an autodifferentiation framework.
142// The first template argument is the functor object, described in the header
143// comment. The second argument is the dimension of the residual (or
144// ceres::DYNAMIC to indicate it will be set at runtime), and subsequent
Keir Mierle8ebb0732012-04-30 23:09:08 -0700145// arguments describe the size of the Nth parameter, one per parameter.
146//
Keir Mierlefdeb5772012-05-09 07:38:07 -0700147// The constructors take ownership of the cost functor.
148//
Sameer Agarwal3a2158d2013-10-03 07:12:14 -0700149// If the number of residuals (argument kNumResiduals below) is
150// ceres::DYNAMIC, then the two-argument constructor must be used. The
151// second constructor takes a number of residuals (in addition to the
152// templated number of residuals). This allows for varying the number
153// of residuals for a single autodiff cost function at runtime.
Keir Mierle8ebb0732012-04-30 23:09:08 -0700154template <typename CostFunctor,
Sameer Agarwal3a2158d2013-10-03 07:12:14 -0700155 int kNumResiduals, // Number of residuals, or ceres::DYNAMIC.
Keir Mierle8ebb0732012-04-30 23:09:08 -0700156 int N0, // Number of parameters in block 0.
157 int N1 = 0, // Number of parameters in block 1.
158 int N2 = 0, // Number of parameters in block 2.
159 int N3 = 0, // Number of parameters in block 3.
160 int N4 = 0, // Number of parameters in block 4.
Keir Mierlef1e67cc2012-10-19 10:50:02 -0700161 int N5 = 0, // Number of parameters in block 5.
162 int N6 = 0, // Number of parameters in block 6.
163 int N7 = 0, // Number of parameters in block 7.
164 int N8 = 0, // Number of parameters in block 8.
165 int N9 = 0> // Number of parameters in block 9.
Sameer Agarwal3a2158d2013-10-03 07:12:14 -0700166class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals,
Sameer Agarwal509f68c2013-02-20 01:39:03 -0800167 N0, N1, N2, N3, N4,
168 N5, N6, N7, N8, N9> {
Keir Mierle8ebb0732012-04-30 23:09:08 -0700169 public:
Keir Mierlefdeb5772012-05-09 07:38:07 -0700170 // Takes ownership of functor. Uses the template-provided value for the
Sameer Agarwal3a2158d2013-10-03 07:12:14 -0700171 // number of residuals ("kNumResiduals").
Keir Mierlefdeb5772012-05-09 07:38:07 -0700172 explicit AutoDiffCostFunction(CostFunctor* functor)
173 : functor_(functor) {
Sameer Agarwal3a2158d2013-10-03 07:12:14 -0700174 CHECK_NE(kNumResiduals, DYNAMIC)
175 << "Can't run the fixed-size constructor if the "
176 << "number of residuals is set to ceres::DYNAMIC.";
Keir Mierlefdeb5772012-05-09 07:38:07 -0700177 }
178
Sameer Agarwal3a2158d2013-10-03 07:12:14 -0700179 // Takes ownership of functor. Ignores the template-provided
180 // kNumResiduals in favor of the "num_residuals" argument provided.
Keir Mierlefdeb5772012-05-09 07:38:07 -0700181 //
182 // This allows for having autodiff cost functions which return varying
183 // numbers of residuals at runtime.
184 AutoDiffCostFunction(CostFunctor* functor, int num_residuals)
185 : functor_(functor) {
Sameer Agarwal3a2158d2013-10-03 07:12:14 -0700186 CHECK_EQ(kNumResiduals, DYNAMIC)
187 << "Can't run the dynamic-size constructor if the "
188 << "number of residuals is not ceres::DYNAMIC.";
Sameer Agarwal10ac7d82013-10-03 14:37:07 -0700189 SizedCostFunction<kNumResiduals,
190 N0, N1, N2, N3, N4,
191 N5, N6, N7, N8, N9>
Keir Mierlef1e67cc2012-10-19 10:50:02 -0700192 ::set_num_residuals(num_residuals);
Keir Mierlefdeb5772012-05-09 07:38:07 -0700193 }
Keir Mierle8ebb0732012-04-30 23:09:08 -0700194
195 virtual ~AutoDiffCostFunction() {}
196
197 // Implementation details follow; clients of the autodiff cost function should
198 // not have to examine below here.
199 //
200 // To handle varardic cost functions, some template magic is needed. It's
201 // mostly hidden inside autodiff.h.
202 virtual bool Evaluate(double const* const* parameters,
203 double* residuals,
204 double** jacobians) const {
205 if (!jacobians) {
206 return internal::VariadicEvaluate<
Keir Mierlef1e67cc2012-10-19 10:50:02 -0700207 CostFunctor, double, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>
Keir Mierle8ebb0732012-04-30 23:09:08 -0700208 ::Call(*functor_, parameters, residuals);
209 }
210 return internal::AutoDiff<CostFunctor, double,
Keir Mierlef1e67cc2012-10-19 10:50:02 -0700211 N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Differentiate(
Keir Mierlefdeb5772012-05-09 07:38:07 -0700212 *functor_,
213 parameters,
Sameer Agarwal10ac7d82013-10-03 14:37:07 -0700214 SizedCostFunction<kNumResiduals,
Sameer Agarwalfa00ca92013-10-03 14:46:37 -0700215 N0, N1, N2, N3, N4,
216 N5, N6, N7, N8, N9>::num_residuals(),
Keir Mierlefdeb5772012-05-09 07:38:07 -0700217 residuals,
218 jacobians);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700219 }
220
221 private:
222 internal::scoped_ptr<CostFunctor> functor_;
223};
224
225} // namespace ceres
226
227#endif // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_