blob: 070421789641f7a630ba3b3cd3d6c9d676fac599 [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Templated struct implementing the camera model and residual
32// computation for bundle adjustment used by Noah Snavely's Bundler
33// SfM system. This is also the camera model/residual for the bundle
34// adjustment problems in the BAL dataset. It is templated so that we
35// can use Ceres's automatic differentiation to compute analytic
36// jacobians.
37//
38// For details see: http://phototour.cs.washington.edu/bundler/
39// and http://grail.cs.washington.edu/projects/bal/
40
41#ifndef CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_
42#define CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_
43
44#include "ceres/rotation.h"
45
46namespace ceres {
47namespace examples {
48
49// Templated pinhole camera model for used with Ceres. The camera is
50// parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for
51// focal length and 2 for radial distortion. The principal point is not modeled
52// (i.e. it is assumed be located at the image center).
53struct SnavelyReprojectionError {
54 SnavelyReprojectionError(double observed_x, double observed_y)
55 : observed_x(observed_x), observed_y(observed_y) {}
56
57 template <typename T>
58 bool operator()(const T* const camera,
59 const T* const point,
60 T* residuals) const {
61 // camera[0,1,2] are the angle-axis rotation.
62 T p[3];
63 ceres::AngleAxisRotatePoint(camera, point, p);
64
65 // camera[3,4,5] are the translation.
66 p[0] += camera[3];
67 p[1] += camera[4];
68 p[2] += camera[5];
69
70 // Compute the center of distortion. The sign change comes from
71 // the camera model that Noah Snavely's Bundler assumes, whereby
72 // the camera coordinate system has a negative z axis.
73 const T& focal = camera[6];
Ricardo Martinf9a7ce82012-09-19 16:46:06 -070074 T xp = - p[0] / p[2];
75 T yp = - p[1] / p[2];
Keir Mierle8ebb0732012-04-30 23:09:08 -070076
77 // Apply second and fourth order radial distortion.
78 const T& l1 = camera[7];
79 const T& l2 = camera[8];
80 T r2 = xp*xp + yp*yp;
81 T distortion = T(1.0) + r2 * (l1 + l2 * r2);
82
83 // Compute final projected point position.
Ricardo Martinf9a7ce82012-09-19 16:46:06 -070084 T predicted_x = focal * distortion * xp;
85 T predicted_y = focal * distortion * yp;
Keir Mierle8ebb0732012-04-30 23:09:08 -070086
87 // The error is the difference between the predicted and observed position.
88 residuals[0] = predicted_x - T(observed_x);
89 residuals[1] = predicted_y - T(observed_y);
90
91 return true;
92 }
93
94 double observed_x;
95 double observed_y;
96};
97
98// Templated pinhole camera model for used with Ceres. The camera is
99// parameterized using 10 parameters. 4 for rotation, 3 for
100// translation, 1 for focal length and 2 for radial distortion. The
101// principal point is not modeled (i.e. it is assumed be located at
102// the image center).
Sameer Agarwal5476df52012-08-09 21:46:19 -0700103struct SnavelyReprojectionErrorWithQuaternions {
Keir Mierle8ebb0732012-04-30 23:09:08 -0700104 // (u, v): the position of the observation with respect to the image
105 // center point.
Sameer Agarwal5476df52012-08-09 21:46:19 -0700106 SnavelyReprojectionErrorWithQuaternions(double observed_x, double observed_y)
Keir Mierle8ebb0732012-04-30 23:09:08 -0700107 : observed_x(observed_x), observed_y(observed_y) {}
108
109 template <typename T>
110 bool operator()(const T* const camera_rotation,
111 const T* const camera_translation_and_intrinsics,
112 const T* const point,
113 T* residuals) const {
114 const T& focal = camera_translation_and_intrinsics[3];
115 const T& l1 = camera_translation_and_intrinsics[4];
116 const T& l2 = camera_translation_and_intrinsics[5];
117
118 // Use a quaternion rotation that doesn't assume the quaternion is
119 // normalized, since one of the ways to run the bundler is to let Ceres
120 // optimize all 4 quaternion parameters unconstrained.
121 T p[3];
122 QuaternionRotatePoint(camera_rotation, point, p);
123
124 p[0] += camera_translation_and_intrinsics[0];
125 p[1] += camera_translation_and_intrinsics[1];
126 p[2] += camera_translation_and_intrinsics[2];
127
128 // Compute the center of distortion. The sign change comes from
129 // the camera model that Noah Snavely's Bundler assumes, whereby
130 // the camera coordinate system has a negative z axis.
Ricardo Martinf9a7ce82012-09-19 16:46:06 -0700131 T xp = - p[0] / p[2];
132 T yp = - p[1] / p[2];
Keir Mierle8ebb0732012-04-30 23:09:08 -0700133
134 // Apply second and fourth order radial distortion.
135 T r2 = xp*xp + yp*yp;
136 T distortion = T(1.0) + r2 * (l1 + l2 * r2);
137
138 // Compute final projected point position.
Ricardo Martinf9a7ce82012-09-19 16:46:06 -0700139 T predicted_x = focal * distortion * xp;
140 T predicted_y = focal * distortion * yp;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700141
142 // The error is the difference between the predicted and observed position.
143 residuals[0] = predicted_x - T(observed_x);
144 residuals[1] = predicted_y - T(observed_y);
145
146 return true;
147 }
148
149 double observed_x;
150 double observed_y;
151};
152
153} // namespace examples
154} // namespace ceres
155
156#endif // CERES_EXAMPLES_SNAVELY_REPROJECTION_ERROR_H_