Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
| 31 | #ifndef CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_ |
| 32 | #define CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_ |
| 33 | |
| 34 | #include <algorithm> |
| 35 | #include "ceres/linear_operator.h" |
| 36 | #include "ceres/internal/scoped_ptr.h" |
| 37 | #include "ceres/internal/eigen.h" |
| 38 | |
| 39 | namespace ceres { |
| 40 | namespace internal { |
| 41 | |
| 42 | class SparseMatrix; |
| 43 | |
| 44 | // A linear operator which takes a matrix A and a diagonal vector D and |
| 45 | // performs products of the form |
| 46 | // |
| 47 | // (A^T A + D^T D)x |
| 48 | // |
| 49 | // This is used to implement iterative general sparse linear solving with |
| 50 | // conjugate gradients, where A is the Jacobian and D is a regularizing |
| 51 | // parameter. A brief proof that D^T D is the correct regularizer: |
| 52 | // |
| 53 | // Given a regularized least squares problem: |
| 54 | // |
| 55 | // min ||Ax - b||^2 + ||Dx||^2 |
| 56 | // x |
| 57 | // |
| 58 | // First expand into matrix notation: |
| 59 | // |
| 60 | // (Ax - b)^T (Ax - b) + xD^TDx |
| 61 | // |
| 62 | // Then multiply out to get: |
| 63 | // |
Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 64 | // = xA^TAx - 2b^T Ax + b^Tb + xD^TDx |
| 65 | // |
| 66 | // Take the derivative: |
| 67 | // |
Keir Mierle | e2a6cdc | 2012-05-07 06:39:56 -0700 | [diff] [blame] | 68 | // 0 = 2A^TAx - 2A^T b + 2 D^TDx |
Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 69 | // 0 = A^TAx - A^T b + D^TDx |
| 70 | // 0 = (A^TA + D^TD)x - A^T b |
| 71 | // |
| 72 | // Thus, the symmetric system we need to solve for CGNR is |
| 73 | // |
| 74 | // Sx = z |
| 75 | // |
| 76 | // with S = A^TA + D^TD |
| 77 | // and z = A^T b |
| 78 | // |
| 79 | // Note: This class is not thread safe, since it uses some temporary storage. |
| 80 | class CgnrLinearOperator : public LinearOperator { |
| 81 | public: |
Keir Mierle | e2a6cdc | 2012-05-07 06:39:56 -0700 | [diff] [blame] | 82 | CgnrLinearOperator(const LinearOperator& A, const double *D) |
| 83 | : A_(A), D_(D), z_(new double[A.num_rows()]) { |
Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 84 | } |
| 85 | virtual ~CgnrLinearOperator() {} |
| 86 | |
| 87 | virtual void RightMultiply(const double* x, double* y) const { |
Keir Mierle | e2a6cdc | 2012-05-07 06:39:56 -0700 | [diff] [blame] | 88 | std::fill(z_.get(), z_.get() + A_.num_rows(), 0.0); |
Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 89 | |
| 90 | // z = Ax |
Keir Mierle | e2a6cdc | 2012-05-07 06:39:56 -0700 | [diff] [blame] | 91 | A_.RightMultiply(x, z_.get()); |
Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 92 | |
| 93 | // y = y + Atz |
Keir Mierle | e2a6cdc | 2012-05-07 06:39:56 -0700 | [diff] [blame] | 94 | A_.LeftMultiply(z_.get(), y); |
Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 95 | |
| 96 | // y = y + DtDx |
| 97 | if (D_ != NULL) { |
Keir Mierle | e2a6cdc | 2012-05-07 06:39:56 -0700 | [diff] [blame] | 98 | int n = A_.num_cols(); |
| 99 | VectorRef(y, n).array() += ConstVectorRef(D_, n).array().square() * |
| 100 | ConstVectorRef(x, n).array(); |
Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 101 | } |
| 102 | } |
| 103 | |
| 104 | virtual void LeftMultiply(const double* x, double* y) const { |
| 105 | RightMultiply(x, y); |
| 106 | } |
| 107 | |
Keir Mierle | e2a6cdc | 2012-05-07 06:39:56 -0700 | [diff] [blame] | 108 | virtual int num_rows() const { return A_.num_cols(); } |
| 109 | virtual int num_cols() const { return A_.num_cols(); } |
Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 110 | |
| 111 | private: |
Keir Mierle | e2a6cdc | 2012-05-07 06:39:56 -0700 | [diff] [blame] | 112 | const LinearOperator& A_; |
| 113 | const double* D_; |
Keir Mierle | f7898fb | 2012-05-05 20:55:08 -0700 | [diff] [blame] | 114 | scoped_array<double> z_; |
| 115 | }; |
| 116 | |
| 117 | } // namespace internal |
| 118 | } // namespace ceres |
| 119 | |
| 120 | #endif // CERES_INTERNAL_CGNR_LINEAR_OPERATOR_H_ |