Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // sameeragarwal@google.com (Sameer Agarwal) |
| 31 | // |
| 32 | // Templated functions for manipulating rotations. The templated |
| 33 | // functions are useful when implementing functors for automatic |
| 34 | // differentiation. |
| 35 | // |
| 36 | // In the following, the Quaternions are laid out as 4-vectors, thus: |
| 37 | // |
| 38 | // q[0] scalar part. |
| 39 | // q[1] coefficient of i. |
| 40 | // q[2] coefficient of j. |
| 41 | // q[3] coefficient of k. |
| 42 | // |
| 43 | // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j. |
| 44 | |
| 45 | #ifndef CERES_PUBLIC_ROTATION_H_ |
| 46 | #define CERES_PUBLIC_ROTATION_H_ |
| 47 | |
| 48 | #include <algorithm> |
| 49 | #include <cmath> |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 50 | #include "glog/logging.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 51 | |
| 52 | namespace ceres { |
| 53 | |
| 54 | // Convert a value in combined axis-angle representation to a quaternion. |
| 55 | // The value angle_axis is a triple whose norm is an angle in radians, |
| 56 | // and whose direction is aligned with the axis of rotation, |
| 57 | // and quaternion is a 4-tuple that will contain the resulting quaternion. |
| 58 | // The implementation may be used with auto-differentiation up to the first |
| 59 | // derivative, higher derivatives may have unexpected results near the origin. |
| 60 | template<typename T> |
| 61 | void AngleAxisToQuaternion(T const* angle_axis, T* quaternion); |
| 62 | |
| 63 | // Convert a quaternion to the equivalent combined axis-angle representation. |
| 64 | // The value quaternion must be a unit quaternion - it is not normalized first, |
| 65 | // and angle_axis will be filled with a value whose norm is the angle of |
| 66 | // rotation in radians, and whose direction is the axis of rotation. |
| 67 | // The implemention may be used with auto-differentiation up to the first |
| 68 | // derivative, higher derivatives may have unexpected results near the origin. |
| 69 | template<typename T> |
| 70 | void QuaternionToAngleAxis(T const* quaternion, T* angle_axis); |
| 71 | |
| 72 | // Conversions between 3x3 rotation matrix (in column major order) and |
| 73 | // axis-angle rotation representations. Templated for use with |
| 74 | // autodifferentiation. |
| 75 | template <typename T> |
| 76 | void RotationMatrixToAngleAxis(T const * R, T * angle_axis); |
| 77 | template <typename T> |
| 78 | void AngleAxisToRotationMatrix(T const * angle_axis, T * R); |
| 79 | |
| 80 | // Conversions between 3x3 rotation matrix (in row major order) and |
| 81 | // Euler angle (in degrees) rotation representations. |
| 82 | // |
| 83 | // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z} |
| 84 | // axes, respectively. They are applied in that same order, so the |
| 85 | // total rotation R is Rz * Ry * Rx. |
| 86 | template <typename T> |
| 87 | void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R); |
| 88 | |
| 89 | // Convert a 4-vector to a 3x3 scaled rotation matrix. |
| 90 | // |
| 91 | // The choice of rotation is such that the quaternion [1 0 0 0] goes to an |
| 92 | // identity matrix and for small a, b, c the quaternion [1 a b c] goes to |
| 93 | // the matrix |
| 94 | // |
| 95 | // [ 0 -c b ] |
| 96 | // I + 2 [ c 0 -a ] + higher order terms |
| 97 | // [ -b a 0 ] |
| 98 | // |
| 99 | // which corresponds to a Rodrigues approximation, the last matrix being |
| 100 | // the cross-product matrix of [a b c]. Together with the property that |
| 101 | // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R. |
| 102 | // |
| 103 | // The rotation matrix is row-major. |
| 104 | // |
| 105 | // No normalization of the quaternion is performed, i.e. |
| 106 | // R = ||q||^2 * Q, where Q is an orthonormal matrix |
| 107 | // such that det(Q) = 1 and Q*Q' = I |
| 108 | template <typename T> inline |
| 109 | void QuaternionToScaledRotation(const T q[4], T R[3 * 3]); |
| 110 | |
| 111 | // Same as above except that the rotation matrix is normalized by the |
| 112 | // Frobenius norm, so that R * R' = I (and det(R) = 1). |
| 113 | template <typename T> inline |
| 114 | void QuaternionToRotation(const T q[4], T R[3 * 3]); |
| 115 | |
| 116 | // Rotates a point pt by a quaternion q: |
| 117 | // |
| 118 | // result = R(q) * pt |
| 119 | // |
| 120 | // Assumes the quaternion is unit norm. This assumption allows us to |
| 121 | // write the transform as (something)*pt + pt, as is clear from the |
| 122 | // formula below. If you pass in a quaternion with |q|^2 = 2 then you |
| 123 | // WILL NOT get back 2 times the result you get for a unit quaternion. |
| 124 | template <typename T> inline |
| 125 | void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]); |
| 126 | |
| 127 | // With this function you do not need to assume that q has unit norm. |
| 128 | // It does assume that the norm is non-zero. |
| 129 | template <typename T> inline |
| 130 | void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]); |
| 131 | |
| 132 | // zw = z * w, where * is the Quaternion product between 4 vectors. |
| 133 | template<typename T> inline |
| 134 | void QuaternionProduct(const T z[4], const T w[4], T zw[4]); |
| 135 | |
| 136 | // xy = x cross y; |
| 137 | template<typename T> inline |
| 138 | void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]); |
| 139 | |
| 140 | template<typename T> inline |
| 141 | T DotProduct(const T x[3], const T y[3]); |
| 142 | |
| 143 | // y = R(angle_axis) * x; |
| 144 | template<typename T> inline |
| 145 | void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]); |
| 146 | |
| 147 | // --- IMPLEMENTATION |
| 148 | |
| 149 | template<typename T> |
| 150 | inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) { |
Sameer Agarwal | 383c04f | 2012-08-17 10:14:04 -0700 | [diff] [blame] | 151 | const T& a0 = angle_axis[0]; |
| 152 | const T& a1 = angle_axis[1]; |
| 153 | const T& a2 = angle_axis[2]; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 154 | const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2; |
| 155 | |
| 156 | // For points not at the origin, the full conversion is numerically stable. |
| 157 | if (theta_squared > T(0.0)) { |
| 158 | const T theta = sqrt(theta_squared); |
| 159 | const T half_theta = theta * T(0.5); |
| 160 | const T k = sin(half_theta) / theta; |
| 161 | quaternion[0] = cos(half_theta); |
| 162 | quaternion[1] = a0 * k; |
| 163 | quaternion[2] = a1 * k; |
| 164 | quaternion[3] = a2 * k; |
| 165 | } else { |
| 166 | // At the origin, sqrt() will produce NaN in the derivative since |
| 167 | // the argument is zero. By approximating with a Taylor series, |
| 168 | // and truncating at one term, the value and first derivatives will be |
| 169 | // computed correctly when Jets are used. |
| 170 | const T k(0.5); |
| 171 | quaternion[0] = T(1.0); |
| 172 | quaternion[1] = a0 * k; |
| 173 | quaternion[2] = a1 * k; |
| 174 | quaternion[3] = a2 * k; |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | template<typename T> |
| 179 | inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) { |
Sameer Agarwal | 383c04f | 2012-08-17 10:14:04 -0700 | [diff] [blame] | 180 | const T& q1 = quaternion[1]; |
| 181 | const T& q2 = quaternion[2]; |
| 182 | const T& q3 = quaternion[3]; |
| 183 | const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 184 | |
| 185 | // For quaternions representing non-zero rotation, the conversion |
| 186 | // is numerically stable. |
Sameer Agarwal | 383c04f | 2012-08-17 10:14:04 -0700 | [diff] [blame] | 187 | if (sin_squared_theta > T(0.0)) { |
| 188 | const T sin_theta = sqrt(sin_squared_theta); |
| 189 | const T& cos_theta = quaternion[0]; |
| 190 | |
| 191 | // If cos_theta is negative, theta is greater than pi/2, which |
| 192 | // means that angle for the angle_axis vector which is 2 * theta |
| 193 | // would be greater than pi. |
| 194 | // |
| 195 | // While this will result in the correct rotation, it does not |
| 196 | // result in a normalized angle-axis vector. |
| 197 | // |
| 198 | // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi, |
| 199 | // which is equivalent saying |
| 200 | // |
| 201 | // theta - pi = atan(sin(theta - pi), cos(theta - pi)) |
| 202 | // = atan(-sin(theta), -cos(theta)) |
| 203 | // |
| 204 | const T two_theta = |
| 205 | T(2.0) * ((cos_theta < 0.0) |
| 206 | ? atan2(-sin_theta, -cos_theta) |
| 207 | : atan2(sin_theta, cos_theta)); |
| 208 | const T k = two_theta / sin_theta; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 209 | angle_axis[0] = q1 * k; |
| 210 | angle_axis[1] = q2 * k; |
| 211 | angle_axis[2] = q3 * k; |
| 212 | } else { |
| 213 | // For zero rotation, sqrt() will produce NaN in the derivative since |
| 214 | // the argument is zero. By approximating with a Taylor series, |
| 215 | // and truncating at one term, the value and first derivatives will be |
| 216 | // computed correctly when Jets are used. |
| 217 | const T k(2.0); |
| 218 | angle_axis[0] = q1 * k; |
| 219 | angle_axis[1] = q2 * k; |
| 220 | angle_axis[2] = q3 * k; |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | // The conversion of a rotation matrix to the angle-axis form is |
| 225 | // numerically problematic when then rotation angle is close to zero |
| 226 | // or to Pi. The following implementation detects when these two cases |
| 227 | // occurs and deals with them by taking code paths that are guaranteed |
| 228 | // to not perform division by a small number. |
| 229 | template <typename T> |
| 230 | inline void RotationMatrixToAngleAxis(const T * R, T * angle_axis) { |
| 231 | // x = k * 2 * sin(theta), where k is the axis of rotation. |
| 232 | angle_axis[0] = R[5] - R[7]; |
| 233 | angle_axis[1] = R[6] - R[2]; |
| 234 | angle_axis[2] = R[1] - R[3]; |
| 235 | |
| 236 | static const T kOne = T(1.0); |
| 237 | static const T kTwo = T(2.0); |
| 238 | |
| 239 | // Since the right hand side may give numbers just above 1.0 or |
| 240 | // below -1.0 leading to atan misbehaving, we threshold. |
| 241 | T costheta = std::min(std::max((R[0] + R[4] + R[8] - kOne) / kTwo, |
| 242 | T(-1.0)), |
| 243 | kOne); |
| 244 | |
| 245 | // sqrt is guaranteed to give non-negative results, so we only |
| 246 | // threshold above. |
| 247 | T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] + |
| 248 | angle_axis[1] * angle_axis[1] + |
| 249 | angle_axis[2] * angle_axis[2]) / kTwo, |
| 250 | kOne); |
| 251 | |
| 252 | // Use the arctan2 to get the right sign on theta |
| 253 | const T theta = atan2(sintheta, costheta); |
| 254 | |
| 255 | // Case 1: sin(theta) is large enough, so dividing by it is not a |
| 256 | // problem. We do not use abs here, because while jets.h imports |
| 257 | // std::abs into the namespace, here in this file, abs resolves to |
| 258 | // the int version of the function, which returns zero always. |
| 259 | // |
| 260 | // We use a threshold much larger then the machine epsilon, because |
| 261 | // if sin(theta) is small, not only do we risk overflow but even if |
| 262 | // that does not occur, just dividing by a small number will result |
| 263 | // in numerical garbage. So we play it safe. |
| 264 | static const double kThreshold = 1e-12; |
| 265 | if ((sintheta > kThreshold) || (sintheta < -kThreshold)) { |
| 266 | const T r = theta / (kTwo * sintheta); |
| 267 | for (int i = 0; i < 3; ++i) { |
| 268 | angle_axis[i] *= r; |
| 269 | } |
| 270 | return; |
| 271 | } |
| 272 | |
| 273 | // Case 2: theta ~ 0, means sin(theta) ~ theta to a good |
| 274 | // approximation. |
Sameer Agarwal | 104ad90 | 2012-07-17 08:24:31 -0700 | [diff] [blame] | 275 | if (costheta > 0.0) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 276 | const T kHalf = T(0.5); |
| 277 | for (int i = 0; i < 3; ++i) { |
| 278 | angle_axis[i] *= kHalf; |
| 279 | } |
| 280 | return; |
| 281 | } |
| 282 | |
| 283 | // Case 3: theta ~ pi, this is the hard case. Since theta is large, |
| 284 | // and sin(theta) is small. Dividing by theta by sin(theta) will |
| 285 | // either give an overflow or worse still numerically meaningless |
| 286 | // results. Thus we use an alternate more complicated formula |
| 287 | // here. |
| 288 | |
| 289 | // Since cos(theta) is negative, division by (1-cos(theta)) cannot |
| 290 | // overflow. |
| 291 | const T inv_one_minus_costheta = kOne / (kOne - costheta); |
| 292 | |
| 293 | // We now compute the absolute value of coordinates of the axis |
| 294 | // vector using the diagonal entries of R. To resolve the sign of |
| 295 | // these entries, we compare the sign of angle_axis[i]*sin(theta) |
| 296 | // with the sign of sin(theta). If they are the same, then |
| 297 | // angle_axis[i] should be positive, otherwise negative. |
| 298 | for (int i = 0; i < 3; ++i) { |
| 299 | angle_axis[i] = theta * sqrt((R[i*4] - costheta) * inv_one_minus_costheta); |
Sameer Agarwal | 104ad90 | 2012-07-17 08:24:31 -0700 | [diff] [blame] | 300 | if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) || |
| 301 | ((sintheta > 0.0) && (angle_axis[i] < 0.0))) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 302 | angle_axis[i] = -angle_axis[i]; |
| 303 | } |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | template <typename T> |
| 308 | inline void AngleAxisToRotationMatrix(const T * angle_axis, T * R) { |
| 309 | static const T kOne = T(1.0); |
| 310 | const T theta2 = DotProduct(angle_axis, angle_axis); |
| 311 | if (theta2 > 0.0) { |
| 312 | // We want to be careful to only evaluate the square root if the |
| 313 | // norm of the angle_axis vector is greater than zero. Otherwise |
| 314 | // we get a division by zero. |
| 315 | const T theta = sqrt(theta2); |
| 316 | const T wx = angle_axis[0] / theta; |
| 317 | const T wy = angle_axis[1] / theta; |
| 318 | const T wz = angle_axis[2] / theta; |
| 319 | |
| 320 | const T costheta = cos(theta); |
| 321 | const T sintheta = sin(theta); |
| 322 | |
| 323 | R[0] = costheta + wx*wx*(kOne - costheta); |
| 324 | R[1] = wz*sintheta + wx*wy*(kOne - costheta); |
| 325 | R[2] = -wy*sintheta + wx*wz*(kOne - costheta); |
| 326 | R[3] = wx*wy*(kOne - costheta) - wz*sintheta; |
| 327 | R[4] = costheta + wy*wy*(kOne - costheta); |
| 328 | R[5] = wx*sintheta + wy*wz*(kOne - costheta); |
| 329 | R[6] = wy*sintheta + wx*wz*(kOne - costheta); |
| 330 | R[7] = -wx*sintheta + wy*wz*(kOne - costheta); |
| 331 | R[8] = costheta + wz*wz*(kOne - costheta); |
| 332 | } else { |
| 333 | // At zero, we switch to using the first order Taylor expansion. |
| 334 | R[0] = kOne; |
| 335 | R[1] = -angle_axis[2]; |
| 336 | R[2] = angle_axis[1]; |
| 337 | R[3] = angle_axis[2]; |
| 338 | R[4] = kOne; |
| 339 | R[5] = -angle_axis[0]; |
| 340 | R[6] = -angle_axis[1]; |
| 341 | R[7] = angle_axis[0]; |
| 342 | R[8] = kOne; |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | template <typename T> |
| 347 | inline void EulerAnglesToRotationMatrix(const T* euler, |
| 348 | const int row_stride, |
| 349 | T* R) { |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 350 | const double kPi = 3.14159265358979323846; |
| 351 | const T degrees_to_radians(kPi / 180.0); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 352 | |
| 353 | const T pitch(euler[0] * degrees_to_radians); |
| 354 | const T roll(euler[1] * degrees_to_radians); |
| 355 | const T yaw(euler[2] * degrees_to_radians); |
| 356 | |
| 357 | const T c1 = cos(yaw); |
| 358 | const T s1 = sin(yaw); |
| 359 | const T c2 = cos(roll); |
| 360 | const T s2 = sin(roll); |
| 361 | const T c3 = cos(pitch); |
| 362 | const T s3 = sin(pitch); |
| 363 | |
| 364 | // Rows of the rotation matrix. |
| 365 | T* R1 = R; |
| 366 | T* R2 = R1 + row_stride; |
| 367 | T* R3 = R2 + row_stride; |
| 368 | |
| 369 | R1[0] = c1*c2; |
| 370 | R1[1] = -s1*c3 + c1*s2*s3; |
| 371 | R1[2] = s1*s3 + c1*s2*c3; |
| 372 | |
| 373 | R2[0] = s1*c2; |
| 374 | R2[1] = c1*c3 + s1*s2*s3; |
| 375 | R2[2] = -c1*s3 + s1*s2*c3; |
| 376 | |
| 377 | R3[0] = -s2; |
| 378 | R3[1] = c2*s3; |
| 379 | R3[2] = c2*c3; |
| 380 | } |
| 381 | |
| 382 | template <typename T> inline |
| 383 | void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) { |
| 384 | // Make convenient names for elements of q. |
| 385 | T a = q[0]; |
| 386 | T b = q[1]; |
| 387 | T c = q[2]; |
| 388 | T d = q[3]; |
| 389 | // This is not to eliminate common sub-expression, but to |
| 390 | // make the lines shorter so that they fit in 80 columns! |
| 391 | T aa = a * a; |
| 392 | T ab = a * b; |
| 393 | T ac = a * c; |
| 394 | T ad = a * d; |
| 395 | T bb = b * b; |
| 396 | T bc = b * c; |
| 397 | T bd = b * d; |
| 398 | T cc = c * c; |
| 399 | T cd = c * d; |
| 400 | T dd = d * d; |
| 401 | |
| 402 | R[0] = aa + bb - cc - dd; R[1] = T(2) * (bc - ad); R[2] = T(2) * (ac + bd); // NOLINT |
| 403 | R[3] = T(2) * (ad + bc); R[4] = aa - bb + cc - dd; R[5] = T(2) * (cd - ab); // NOLINT |
| 404 | R[6] = T(2) * (bd - ac); R[7] = T(2) * (ab + cd); R[8] = aa - bb - cc + dd; // NOLINT |
| 405 | } |
| 406 | |
| 407 | template <typename T> inline |
| 408 | void QuaternionToRotation(const T q[4], T R[3 * 3]) { |
| 409 | QuaternionToScaledRotation(q, R); |
| 410 | |
| 411 | T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]; |
| 412 | CHECK_NE(normalizer, T(0)); |
| 413 | normalizer = T(1) / normalizer; |
| 414 | |
| 415 | for (int i = 0; i < 9; ++i) { |
| 416 | R[i] *= normalizer; |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | template <typename T> inline |
| 421 | void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) { |
| 422 | const T t2 = q[0] * q[1]; |
| 423 | const T t3 = q[0] * q[2]; |
| 424 | const T t4 = q[0] * q[3]; |
| 425 | const T t5 = -q[1] * q[1]; |
| 426 | const T t6 = q[1] * q[2]; |
| 427 | const T t7 = q[1] * q[3]; |
| 428 | const T t8 = -q[2] * q[2]; |
| 429 | const T t9 = q[2] * q[3]; |
| 430 | const T t1 = -q[3] * q[3]; |
| 431 | result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0]; // NOLINT |
| 432 | result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1]; // NOLINT |
| 433 | result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2]; // NOLINT |
| 434 | } |
| 435 | |
| 436 | |
| 437 | template <typename T> inline |
| 438 | void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) { |
| 439 | // 'scale' is 1 / norm(q). |
| 440 | const T scale = T(1) / sqrt(q[0] * q[0] + |
| 441 | q[1] * q[1] + |
| 442 | q[2] * q[2] + |
| 443 | q[3] * q[3]); |
| 444 | |
| 445 | // Make unit-norm version of q. |
| 446 | const T unit[4] = { |
| 447 | scale * q[0], |
| 448 | scale * q[1], |
| 449 | scale * q[2], |
| 450 | scale * q[3], |
| 451 | }; |
| 452 | |
| 453 | UnitQuaternionRotatePoint(unit, pt, result); |
| 454 | } |
| 455 | |
| 456 | template<typename T> inline |
| 457 | void QuaternionProduct(const T z[4], const T w[4], T zw[4]) { |
| 458 | zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3]; |
| 459 | zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2]; |
| 460 | zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1]; |
| 461 | zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0]; |
| 462 | } |
| 463 | |
| 464 | // xy = x cross y; |
| 465 | template<typename T> inline |
| 466 | void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) { |
| 467 | x_cross_y[0] = x[1] * y[2] - x[2] * y[1]; |
| 468 | x_cross_y[1] = x[2] * y[0] - x[0] * y[2]; |
| 469 | x_cross_y[2] = x[0] * y[1] - x[1] * y[0]; |
| 470 | } |
| 471 | |
| 472 | template<typename T> inline |
| 473 | T DotProduct(const T x[3], const T y[3]) { |
| 474 | return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]); |
| 475 | } |
| 476 | |
| 477 | template<typename T> inline |
| 478 | void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) { |
| 479 | T w[3]; |
| 480 | T sintheta; |
| 481 | T costheta; |
| 482 | |
| 483 | const T theta2 = DotProduct(angle_axis, angle_axis); |
| 484 | if (theta2 > 0.0) { |
| 485 | // Away from zero, use the rodriguez formula |
| 486 | // |
| 487 | // result = pt costheta + |
| 488 | // (w x pt) * sintheta + |
| 489 | // w (w . pt) (1 - costheta) |
| 490 | // |
| 491 | // We want to be careful to only evaluate the square root if the |
| 492 | // norm of the angle_axis vector is greater than zero. Otherwise |
| 493 | // we get a division by zero. |
| 494 | // |
| 495 | const T theta = sqrt(theta2); |
| 496 | w[0] = angle_axis[0] / theta; |
| 497 | w[1] = angle_axis[1] / theta; |
| 498 | w[2] = angle_axis[2] / theta; |
| 499 | costheta = cos(theta); |
| 500 | sintheta = sin(theta); |
| 501 | T w_cross_pt[3]; |
| 502 | CrossProduct(w, pt, w_cross_pt); |
| 503 | T w_dot_pt = DotProduct(w, pt); |
| 504 | for (int i = 0; i < 3; ++i) { |
| 505 | result[i] = pt[i] * costheta + |
| 506 | w_cross_pt[i] * sintheta + |
| 507 | w[i] * (T(1.0) - costheta) * w_dot_pt; |
| 508 | } |
| 509 | } else { |
| 510 | // Near zero, the first order Taylor approximation of the rotation |
| 511 | // matrix R corresponding to a vector w and angle w is |
| 512 | // |
| 513 | // R = I + hat(w) * sin(theta) |
| 514 | // |
| 515 | // But sintheta ~ theta and theta * w = angle_axis, which gives us |
| 516 | // |
| 517 | // R = I + hat(w) |
| 518 | // |
| 519 | // and actually performing multiplication with the point pt, gives us |
| 520 | // R * pt = pt + w x pt. |
| 521 | // |
| 522 | // Switching to the Taylor expansion at zero helps avoid all sorts |
| 523 | // of numerical nastiness. |
| 524 | T w_cross_pt[3]; |
| 525 | CrossProduct(angle_axis, pt, w_cross_pt); |
| 526 | for (int i = 0; i < 3; ++i) { |
| 527 | result[i] = pt[i] + w_cross_pt[i]; |
| 528 | } |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | } // namespace ceres |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 533 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 534 | #endif // CERES_PUBLIC_ROTATION_H_ |