Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: moll.markus@arcor.de (Markus Moll) |
Sameer Agarwal | e7295c2 | 2012-11-23 18:56:50 -0800 | [diff] [blame] | 30 | // sameeragarwal@google.com (Sameer Agarwal) |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 31 | |
Sameer Agarwal | e7295c2 | 2012-11-23 18:56:50 -0800 | [diff] [blame] | 32 | #include "ceres/polynomial.h" |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 33 | |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 34 | #include <cmath> |
| 35 | #include <cstddef> |
Sameer Agarwal | e7295c2 | 2012-11-23 18:56:50 -0800 | [diff] [blame] | 36 | #include <vector> |
| 37 | |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 38 | #include "Eigen/Dense" |
| 39 | #include "ceres/internal/port.h" |
Alex Stewart | 7124c34 | 2013-11-07 16:10:02 +0000 | [diff] [blame] | 40 | #include "ceres/stringprintf.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 41 | #include "glog/logging.h" |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 42 | |
| 43 | namespace ceres { |
| 44 | namespace internal { |
| 45 | namespace { |
| 46 | |
| 47 | // Balancing function as described by B. N. Parlett and C. Reinsch, |
| 48 | // "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors". |
| 49 | // In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304, |
| 50 | // Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404 |
| 51 | void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) { |
| 52 | CHECK_NOTNULL(companion_matrix_ptr); |
| 53 | Matrix& companion_matrix = *companion_matrix_ptr; |
| 54 | Matrix companion_matrix_offdiagonal = companion_matrix; |
| 55 | companion_matrix_offdiagonal.diagonal().setZero(); |
| 56 | |
| 57 | const int degree = companion_matrix.rows(); |
| 58 | |
| 59 | // gamma <= 1 controls how much a change in the scaling has to |
| 60 | // lower the 1-norm of the companion matrix to be accepted. |
| 61 | // |
| 62 | // gamma = 1 seems to lead to cycles (numerical issues?), so |
| 63 | // we set it slightly lower. |
| 64 | const double gamma = 0.9; |
| 65 | |
| 66 | // Greedily scale row/column pairs until there is no change. |
| 67 | bool scaling_has_changed; |
| 68 | do { |
| 69 | scaling_has_changed = false; |
| 70 | |
| 71 | for (int i = 0; i < degree; ++i) { |
| 72 | const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>(); |
| 73 | const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>(); |
| 74 | |
| 75 | // Decompose row_norm/col_norm into mantissa * 2^exponent, |
| 76 | // where 0.5 <= mantissa < 1. Discard mantissa (return value |
| 77 | // of frexp), as only the exponent is needed. |
| 78 | int exponent = 0; |
| 79 | std::frexp(row_norm / col_norm, &exponent); |
| 80 | exponent /= 2; |
| 81 | |
| 82 | if (exponent != 0) { |
| 83 | const double scaled_col_norm = std::ldexp(col_norm, exponent); |
| 84 | const double scaled_row_norm = std::ldexp(row_norm, -exponent); |
| 85 | if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) { |
| 86 | // Accept the new scaling. (Multiplication by powers of 2 should not |
| 87 | // introduce rounding errors (ignoring non-normalized numbers and |
| 88 | // over- or underflow)) |
| 89 | scaling_has_changed = true; |
| 90 | companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent); |
| 91 | companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent); |
| 92 | } |
| 93 | } |
| 94 | } |
| 95 | } while (scaling_has_changed); |
| 96 | |
| 97 | companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal(); |
| 98 | companion_matrix = companion_matrix_offdiagonal; |
| 99 | VLOG(3) << "Balanced companion matrix is\n" << companion_matrix; |
| 100 | } |
| 101 | |
| 102 | void BuildCompanionMatrix(const Vector& polynomial, |
| 103 | Matrix* companion_matrix_ptr) { |
| 104 | CHECK_NOTNULL(companion_matrix_ptr); |
| 105 | Matrix& companion_matrix = *companion_matrix_ptr; |
| 106 | |
| 107 | const int degree = polynomial.size() - 1; |
| 108 | |
| 109 | companion_matrix.resize(degree, degree); |
| 110 | companion_matrix.setZero(); |
| 111 | companion_matrix.diagonal(-1).setOnes(); |
Keir Mierle | ebcfdf4 | 2012-08-08 10:29:39 -0700 | [diff] [blame] | 112 | companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree); |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 113 | } |
| 114 | |
| 115 | // Remove leading terms with zero coefficients. |
| 116 | Vector RemoveLeadingZeros(const Vector& polynomial_in) { |
| 117 | int i = 0; |
| 118 | while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) { |
| 119 | ++i; |
| 120 | } |
| 121 | return polynomial_in.tail(polynomial_in.size() - i); |
| 122 | } |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 123 | |
Sameer Agarwal | 1284a51 | 2013-11-24 15:09:43 -0800 | [diff] [blame] | 124 | void FindLinearPolynomialRoots(const Vector& polynomial, |
| 125 | Vector* real, |
| 126 | Vector* imaginary) { |
| 127 | CHECK_EQ(polynomial.size(), 2); |
| 128 | if (real != NULL) { |
| 129 | real->resize(1); |
| 130 | (*real)(0) = -polynomial(1) / polynomial(0); |
| 131 | } |
| 132 | |
| 133 | if (imaginary != NULL) { |
| 134 | imaginary->setZero(1); |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | void FindQuadraticPolynomialRoots(const Vector& polynomial, |
| 139 | Vector* real, |
| 140 | Vector* imaginary) { |
| 141 | CHECK_EQ(polynomial.size(), 3); |
| 142 | const double a = polynomial(0); |
| 143 | const double b = polynomial(1); |
| 144 | const double c = polynomial(2); |
| 145 | const double D = b * b - 4 * a * c; |
| 146 | const double sqrt_D = sqrt(fabs(D)); |
| 147 | if (real != NULL) { |
| 148 | real->setZero(2); |
| 149 | } |
| 150 | if (imaginary != NULL) { |
| 151 | imaginary->setZero(2); |
| 152 | } |
| 153 | |
| 154 | // Real roots. |
| 155 | if (D >= 0) { |
| 156 | if (real != NULL) { |
| 157 | // Stable quadratic roots according to BKP Horn. |
| 158 | // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf |
| 159 | if (b >= 0) { |
| 160 | (*real)(0) = (-b - sqrt_D) / (2.0 * a); |
| 161 | (*real)(1) = (2.0 * c) / (-b - sqrt_D); |
| 162 | } else { |
| 163 | (*real)(0) = (2.0 * c) / (-b + sqrt_D); |
| 164 | (*real)(1) = (-b + sqrt_D) / (2.0 * a); |
| 165 | } |
| 166 | } |
| 167 | return; |
| 168 | } |
| 169 | |
| 170 | // Use the normal quadratic formula for the complex case. |
| 171 | if (real != NULL) { |
| 172 | (*real)(0) = -b / (2.0 * a); |
| 173 | (*real)(1) = -b / (2.0 * a); |
| 174 | } |
| 175 | if (imaginary != NULL) { |
| 176 | (*imaginary)(0) = sqrt_D / (2.0 * a); |
| 177 | (*imaginary)(1) = -sqrt_D / (2.0 * a); |
| 178 | } |
| 179 | } |
Sergey Sharybin | b811041 | 2014-01-02 15:19:17 +0600 | [diff] [blame] | 180 | } // namespace |
Sameer Agarwal | 1284a51 | 2013-11-24 15:09:43 -0800 | [diff] [blame] | 181 | |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 182 | bool FindPolynomialRoots(const Vector& polynomial_in, |
| 183 | Vector* real, |
| 184 | Vector* imaginary) { |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 185 | if (polynomial_in.size() == 0) { |
| 186 | LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots"; |
| 187 | return false; |
| 188 | } |
| 189 | |
| 190 | Vector polynomial = RemoveLeadingZeros(polynomial_in); |
| 191 | const int degree = polynomial.size() - 1; |
| 192 | |
Sameer Agarwal | 1284a51 | 2013-11-24 15:09:43 -0800 | [diff] [blame] | 193 | VLOG(3) << "Input polynomial: " << polynomial_in.transpose(); |
| 194 | if (polynomial.size() != polynomial_in.size()) { |
| 195 | VLOG(3) << "Trimmed polynomial: " << polynomial.transpose(); |
| 196 | } |
| 197 | |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 198 | // Is the polynomial constant? |
| 199 | if (degree == 0) { |
| 200 | LOG(WARNING) << "Trying to extract roots from a constant " |
| 201 | << "polynomial in FindPolynomialRoots"; |
Alex Stewart | bf4c1b7 | 2013-11-14 21:27:20 +0000 | [diff] [blame] | 202 | // We return true with no roots, not false, as if the polynomial is constant |
| 203 | // it is correct that there are no roots. It is not the case that they were |
| 204 | // there, but that we have failed to extract them. |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 205 | return true; |
| 206 | } |
| 207 | |
Sameer Agarwal | 1284a51 | 2013-11-24 15:09:43 -0800 | [diff] [blame] | 208 | // Linear |
| 209 | if (degree == 1) { |
| 210 | FindLinearPolynomialRoots(polynomial, real, imaginary); |
| 211 | return true; |
| 212 | } |
| 213 | |
| 214 | // Quadratic |
| 215 | if (degree == 2) { |
| 216 | FindQuadraticPolynomialRoots(polynomial, real, imaginary); |
| 217 | return true; |
| 218 | } |
| 219 | |
| 220 | // The degree is now known to be at least 3. For cubic or higher |
| 221 | // roots we use the method of companion matrices. |
| 222 | |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 223 | // Divide by leading term |
| 224 | const double leading_term = polynomial(0); |
| 225 | polynomial /= leading_term; |
| 226 | |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 227 | // Build and balance the companion matrix to the polynomial. |
| 228 | Matrix companion_matrix(degree, degree); |
| 229 | BuildCompanionMatrix(polynomial, &companion_matrix); |
| 230 | BalanceCompanionMatrix(&companion_matrix); |
| 231 | |
| 232 | // Find its (complex) eigenvalues. |
Petter Strandmark | ab8e2dc | 2012-09-10 08:46:22 -0700 | [diff] [blame] | 233 | Eigen::EigenSolver<Matrix> solver(companion_matrix, false); |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 234 | if (solver.info() != Eigen::Success) { |
| 235 | LOG(ERROR) << "Failed to extract eigenvalues from companion matrix."; |
| 236 | return false; |
| 237 | } |
| 238 | |
| 239 | // Output roots |
| 240 | if (real != NULL) { |
| 241 | *real = solver.eigenvalues().real(); |
| 242 | } else { |
| 243 | LOG(WARNING) << "NULL pointer passed as real argument to " |
| 244 | << "FindPolynomialRoots. Real parts of the roots will not " |
| 245 | << "be returned."; |
| 246 | } |
| 247 | if (imaginary != NULL) { |
| 248 | *imaginary = solver.eigenvalues().imag(); |
| 249 | } |
| 250 | return true; |
| 251 | } |
| 252 | |
Sameer Agarwal | e7295c2 | 2012-11-23 18:56:50 -0800 | [diff] [blame] | 253 | Vector DifferentiatePolynomial(const Vector& polynomial) { |
| 254 | const int degree = polynomial.rows() - 1; |
| 255 | CHECK_GE(degree, 0); |
Sameer Agarwal | c89ea4b | 2013-01-09 16:09:35 -0800 | [diff] [blame] | 256 | |
| 257 | // Degree zero polynomials are constants, and their derivative does |
| 258 | // not result in a smaller degree polynomial, just a degree zero |
| 259 | // polynomial with value zero. |
| 260 | if (degree == 0) { |
| 261 | return Eigen::VectorXd::Zero(1); |
| 262 | } |
| 263 | |
Sameer Agarwal | e7295c2 | 2012-11-23 18:56:50 -0800 | [diff] [blame] | 264 | Vector derivative(degree); |
| 265 | for (int i = 0; i < degree; ++i) { |
| 266 | derivative(i) = (degree - i) * polynomial(i); |
| 267 | } |
| 268 | |
| 269 | return derivative; |
| 270 | } |
| 271 | |
| 272 | void MinimizePolynomial(const Vector& polynomial, |
| 273 | const double x_min, |
| 274 | const double x_max, |
| 275 | double* optimal_x, |
| 276 | double* optimal_value) { |
| 277 | // Find the minimum of the polynomial at the two ends. |
| 278 | // |
| 279 | // We start by inspecting the middle of the interval. Technically |
| 280 | // this is not needed, but we do this to make this code as close to |
| 281 | // the minFunc package as possible. |
| 282 | *optimal_x = (x_min + x_max) / 2.0; |
| 283 | *optimal_value = EvaluatePolynomial(polynomial, *optimal_x); |
| 284 | |
| 285 | const double x_min_value = EvaluatePolynomial(polynomial, x_min); |
| 286 | if (x_min_value < *optimal_value) { |
| 287 | *optimal_value = x_min_value; |
| 288 | *optimal_x = x_min; |
| 289 | } |
| 290 | |
| 291 | const double x_max_value = EvaluatePolynomial(polynomial, x_max); |
| 292 | if (x_max_value < *optimal_value) { |
| 293 | *optimal_value = x_max_value; |
| 294 | *optimal_x = x_max; |
| 295 | } |
| 296 | |
| 297 | // If the polynomial is linear or constant, we are done. |
| 298 | if (polynomial.rows() <= 2) { |
| 299 | return; |
| 300 | } |
| 301 | |
| 302 | const Vector derivative = DifferentiatePolynomial(polynomial); |
| 303 | Vector roots_real; |
| 304 | if (!FindPolynomialRoots(derivative, &roots_real, NULL)) { |
| 305 | LOG(WARNING) << "Unable to find the critical points of " |
| 306 | << "the interpolating polynomial."; |
| 307 | return; |
| 308 | } |
| 309 | |
| 310 | // This is a bit of an overkill, as some of the roots may actually |
| 311 | // have a complex part, but its simpler to just check these values. |
| 312 | for (int i = 0; i < roots_real.rows(); ++i) { |
| 313 | const double root = roots_real(i); |
| 314 | if ((root < x_min) || (root > x_max)) { |
| 315 | continue; |
| 316 | } |
| 317 | |
| 318 | const double value = EvaluatePolynomial(polynomial, root); |
| 319 | if (value < *optimal_value) { |
| 320 | *optimal_value = value; |
| 321 | *optimal_x = root; |
| 322 | } |
| 323 | } |
| 324 | } |
| 325 | |
Alex Stewart | 7124c34 | 2013-11-07 16:10:02 +0000 | [diff] [blame] | 326 | string FunctionSample::ToDebugString() const { |
| 327 | return StringPrintf("[x: %.8e, value: %.8e, gradient: %.8e, " |
| 328 | "value_is_valid: %d, gradient_is_valid: %d]", |
| 329 | x, value, gradient, value_is_valid, gradient_is_valid); |
| 330 | } |
| 331 | |
Sameer Agarwal | e7295c2 | 2012-11-23 18:56:50 -0800 | [diff] [blame] | 332 | Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) { |
| 333 | const int num_samples = samples.size(); |
| 334 | int num_constraints = 0; |
| 335 | for (int i = 0; i < num_samples; ++i) { |
| 336 | if (samples[i].value_is_valid) { |
| 337 | ++num_constraints; |
| 338 | } |
| 339 | if (samples[i].gradient_is_valid) { |
| 340 | ++num_constraints; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | const int degree = num_constraints - 1; |
Sameer Agarwal | 1284a51 | 2013-11-24 15:09:43 -0800 | [diff] [blame] | 345 | |
Sameer Agarwal | e7295c2 | 2012-11-23 18:56:50 -0800 | [diff] [blame] | 346 | Matrix lhs = Matrix::Zero(num_constraints, num_constraints); |
| 347 | Vector rhs = Vector::Zero(num_constraints); |
| 348 | |
| 349 | int row = 0; |
| 350 | for (int i = 0; i < num_samples; ++i) { |
| 351 | const FunctionSample& sample = samples[i]; |
| 352 | if (sample.value_is_valid) { |
Sameer Agarwal | e7295c2 | 2012-11-23 18:56:50 -0800 | [diff] [blame] | 353 | for (int j = 0; j <= degree; ++j) { |
| 354 | lhs(row, j) = pow(sample.x, degree - j); |
| 355 | } |
| 356 | rhs(row) = sample.value; |
| 357 | ++row; |
| 358 | } |
| 359 | |
| 360 | if (sample.gradient_is_valid) { |
| 361 | for (int j = 0; j < degree; ++j) { |
Sameer Agarwal | e7295c2 | 2012-11-23 18:56:50 -0800 | [diff] [blame] | 362 | lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1); |
| 363 | } |
| 364 | rhs(row) = sample.gradient; |
| 365 | ++row; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | return lhs.fullPivLu().solve(rhs); |
| 370 | } |
| 371 | |
| 372 | void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples, |
| 373 | double x_min, |
| 374 | double x_max, |
| 375 | double* optimal_x, |
| 376 | double* optimal_value) { |
| 377 | const Vector polynomial = FindInterpolatingPolynomial(samples); |
| 378 | MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value); |
| 379 | for (int i = 0; i < samples.size(); ++i) { |
| 380 | const FunctionSample& sample = samples[i]; |
| 381 | if ((sample.x < x_min) || (sample.x > x_max)) { |
| 382 | continue; |
| 383 | } |
| 384 | |
| 385 | const double value = EvaluatePolynomial(polynomial, sample.x); |
| 386 | if (value < *optimal_value) { |
| 387 | *optimal_x = sample.x; |
| 388 | *optimal_value = value; |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | |
Markus Moll | c9eca78 | 2012-07-25 11:34:59 +0200 | [diff] [blame] | 393 | } // namespace internal |
| 394 | } // namespace ceres |