Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
| 31 | #include "ceres/gradient_checking_cost_function.h" |
| 32 | |
| 33 | #include <cmath> |
| 34 | #include <vector> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 35 | #include "ceres/cost_function.h" |
| 36 | #include "ceres/internal/scoped_ptr.h" |
| 37 | #include "ceres/local_parameterization.h" |
| 38 | #include "ceres/loss_function.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 39 | #include "ceres/parameter_block.h" |
| 40 | #include "ceres/problem_impl.h" |
| 41 | #include "ceres/program.h" |
| 42 | #include "ceres/random.h" |
| 43 | #include "ceres/residual_block.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 44 | #include "ceres/sized_cost_function.h" |
| 45 | #include "ceres/types.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 46 | #include "glog/logging.h" |
| 47 | #include "gmock/gmock.h" |
Sameer Agarwal | 62f50d1 | 2012-08-14 14:26:13 -0700 | [diff] [blame] | 48 | #include "gmock/mock-log.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 49 | #include "gtest/gtest.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 50 | |
| 51 | using testing::AllOf; |
| 52 | using testing::AnyNumber; |
| 53 | using testing::HasSubstr; |
| 54 | using testing::ScopedMockLog; |
| 55 | using testing::_; |
| 56 | |
| 57 | namespace ceres { |
| 58 | namespace internal { |
| 59 | |
| 60 | // Pick a (non-quadratic) function whose derivative are easy: |
| 61 | // |
| 62 | // f = exp(- a' x). |
| 63 | // df = - f a. |
| 64 | // |
| 65 | // where 'a' is a vector of the same size as 'x'. In the block |
| 66 | // version, they are both block vectors, of course. |
| 67 | template<int bad_block = 1, int bad_variable = 2> |
| 68 | class TestTerm : public CostFunction { |
| 69 | public: |
| 70 | // The constructor of this function needs to know the number |
| 71 | // of blocks desired, and the size of each block. |
| 72 | TestTerm(int arity, int const *dim) : arity_(arity) { |
| 73 | // Make 'arity' random vectors. |
| 74 | a_.resize(arity_); |
| 75 | for (int j = 0; j < arity_; ++j) { |
| 76 | a_[j].resize(dim[j]); |
| 77 | for (int u = 0; u < dim[j]; ++u) { |
| 78 | a_[j][u] = 2.0 * RandDouble() - 1.0; |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | for (int i = 0; i < arity_; i++) { |
| 83 | mutable_parameter_block_sizes()->push_back(dim[i]); |
| 84 | } |
| 85 | set_num_residuals(1); |
| 86 | } |
| 87 | |
| 88 | bool Evaluate(double const* const* parameters, |
| 89 | double* residuals, |
| 90 | double** jacobians) const { |
| 91 | // Compute a . x. |
| 92 | double ax = 0; |
| 93 | for (int j = 0; j < arity_; ++j) { |
| 94 | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| 95 | ax += a_[j][u] * parameters[j][u]; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | // This is the cost, but also appears as a factor |
| 100 | // in the derivatives. |
| 101 | double f = *residuals = exp(-ax); |
| 102 | |
| 103 | // Accumulate 1st order derivatives. |
| 104 | if (jacobians) { |
| 105 | for (int j = 0; j < arity_; ++j) { |
| 106 | if (jacobians[j]) { |
| 107 | for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| 108 | // See comments before class. |
| 109 | jacobians[j][u] = - f * a_[j][u]; |
| 110 | |
| 111 | if (bad_block == j && bad_variable == u) { |
| 112 | // Whoopsiedoopsie! Deliberately introduce a faulty jacobian entry |
| 113 | // like what happens when users make an error in their jacobian |
| 114 | // computations. This should get detected. |
| 115 | LOG(INFO) << "Poisoning jacobian for parameter block " << j |
| 116 | << ", row 0, column " << u; |
| 117 | jacobians[j][u] += 500; |
| 118 | } |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | return true; |
| 125 | } |
| 126 | |
| 127 | private: |
| 128 | int arity_; |
| 129 | vector<vector<double> > a_; |
| 130 | }; |
| 131 | |
| 132 | TEST(GradientCheckingCostFunction, ResidualsAndJacobiansArePreservedTest) { |
| 133 | srand(5); |
| 134 | |
| 135 | // Test with 3 blocks of size 2, 3 and 4. |
| 136 | int const arity = 3; |
| 137 | int const dim[arity] = { 2, 3, 4 }; |
| 138 | |
| 139 | // Make a random set of blocks. |
| 140 | vector<double*> parameters(arity); |
| 141 | for (int j = 0; j < arity; ++j) { |
| 142 | parameters[j] = new double[dim[j]]; |
| 143 | for (int u = 0; u < dim[j]; ++u) { |
| 144 | parameters[j][u] = 2.0 * RandDouble() - 1.0; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | double original_residual; |
| 149 | double residual; |
| 150 | vector<double*> original_jacobians(arity); |
| 151 | vector<double*> jacobians(arity); |
| 152 | |
| 153 | for (int j = 0; j < arity; ++j) { |
| 154 | // Since residual is one dimensional the jacobians have the same |
| 155 | // size as the parameter blocks. |
| 156 | jacobians[j] = new double[dim[j]]; |
| 157 | original_jacobians[j] = new double[dim[j]]; |
| 158 | } |
| 159 | |
| 160 | const double kRelativeStepSize = 1e-6; |
| 161 | const double kRelativePrecision = 1e-4; |
| 162 | |
| 163 | TestTerm<-1, -1> term(arity, dim); |
| 164 | scoped_ptr<CostFunction> gradient_checking_cost_function( |
| 165 | CreateGradientCheckingCostFunction(&term, |
| 166 | kRelativeStepSize, |
| 167 | kRelativePrecision, |
| 168 | "Ignored.")); |
| 169 | term.Evaluate(¶meters[0], |
| 170 | &original_residual, |
| 171 | &original_jacobians[0]); |
| 172 | |
| 173 | gradient_checking_cost_function->Evaluate(¶meters[0], |
| 174 | &residual, |
| 175 | &jacobians[0]); |
| 176 | EXPECT_EQ(original_residual, residual); |
| 177 | |
| 178 | for (int j = 0; j < arity; j++) { |
| 179 | for (int k = 0; k < dim[j]; ++k) { |
| 180 | EXPECT_EQ(original_jacobians[j][k], jacobians[j][k]); |
| 181 | } |
| 182 | |
| 183 | delete[] parameters[j]; |
| 184 | delete[] jacobians[j]; |
| 185 | delete[] original_jacobians[j]; |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | TEST(GradientCheckingCostFunction, SmokeTest) { |
| 190 | srand(5); |
| 191 | |
| 192 | // Test with 3 blocks of size 2, 3 and 4. |
| 193 | int const arity = 3; |
| 194 | int const dim[arity] = { 2, 3, 4 }; |
| 195 | |
| 196 | // Make a random set of blocks. |
| 197 | vector<double*> parameters(arity); |
| 198 | for (int j = 0; j < arity; ++j) { |
| 199 | parameters[j] = new double[dim[j]]; |
| 200 | for (int u = 0; u < dim[j]; ++u) { |
| 201 | parameters[j][u] = 2.0 * RandDouble() - 1.0; |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | double residual; |
| 206 | vector<double*> jacobians(arity); |
| 207 | for (int j = 0; j < arity; ++j) { |
| 208 | // Since residual is one dimensional the jacobians have the same size as the |
| 209 | // parameter blocks. |
| 210 | jacobians[j] = new double[dim[j]]; |
| 211 | } |
| 212 | |
| 213 | const double kRelativeStepSize = 1e-6; |
| 214 | const double kRelativePrecision = 1e-4; |
| 215 | |
| 216 | // Should have one term that's bad, causing everything to get dumped. |
| 217 | LOG(INFO) << "Bad gradient"; |
| 218 | { |
| 219 | TestTerm<1, 2> term(arity, dim); |
| 220 | scoped_ptr<CostFunction> gradient_checking_cost_function( |
| 221 | CreateGradientCheckingCostFunction(&term, |
| 222 | kRelativeStepSize, |
| 223 | kRelativePrecision, |
| 224 | "Fuzzy bananas")); |
| 225 | |
| 226 | ScopedMockLog log; |
| 227 | EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber()); |
| 228 | EXPECT_CALL(log, Log(WARNING, _, |
| 229 | AllOf(HasSubstr("(1,0,2) Relative error worse than"), |
| 230 | HasSubstr("Fuzzy bananas")))); |
| 231 | |
| 232 | gradient_checking_cost_function->Evaluate(¶meters[0], |
| 233 | &residual, |
| 234 | &jacobians[0]); |
| 235 | } |
| 236 | |
| 237 | // The gradient is correct, so no errors are reported. |
| 238 | LOG(INFO) << "Good gradient"; |
| 239 | { |
| 240 | TestTerm<-1, -1> term(arity, dim); |
| 241 | scoped_ptr<CostFunction> gradient_checking_cost_function( |
| 242 | CreateGradientCheckingCostFunction(&term, |
| 243 | kRelativeStepSize, |
| 244 | kRelativePrecision, |
| 245 | "Ignored.")); |
| 246 | |
| 247 | ScopedMockLog log; |
| 248 | EXPECT_CALL(log, Log(_, _, _)).Times(0); |
| 249 | |
| 250 | gradient_checking_cost_function->Evaluate(¶meters[0], |
| 251 | &residual, |
| 252 | &jacobians[0]); |
| 253 | } |
| 254 | |
| 255 | for (int j = 0; j < arity; j++) { |
| 256 | delete[] parameters[j]; |
| 257 | delete[] jacobians[j]; |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | // The following three classes are for the purposes of defining |
| 262 | // function signatures. They have dummy Evaluate functions. |
| 263 | |
| 264 | // Trivial cost function that accepts a single argument. |
| 265 | class UnaryCostFunction : public CostFunction { |
| 266 | public: |
| 267 | UnaryCostFunction(int num_residuals, int16 parameter_block_size) { |
| 268 | set_num_residuals(num_residuals); |
| 269 | mutable_parameter_block_sizes()->push_back(parameter_block_size); |
| 270 | } |
| 271 | virtual ~UnaryCostFunction() {} |
| 272 | |
| 273 | virtual bool Evaluate(double const* const* parameters, |
| 274 | double* residuals, |
| 275 | double** jacobians) const { |
| 276 | for (int i = 0; i < num_residuals(); ++i) { |
| 277 | residuals[i] = 1; |
| 278 | } |
| 279 | return true; |
| 280 | } |
| 281 | }; |
| 282 | |
| 283 | // Trivial cost function that accepts two arguments. |
| 284 | class BinaryCostFunction: public CostFunction { |
| 285 | public: |
| 286 | BinaryCostFunction(int num_residuals, |
| 287 | int16 parameter_block1_size, |
| 288 | int16 parameter_block2_size) { |
| 289 | set_num_residuals(num_residuals); |
| 290 | mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| 291 | mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| 292 | } |
| 293 | |
| 294 | virtual bool Evaluate(double const* const* parameters, |
| 295 | double* residuals, |
| 296 | double** jacobians) const { |
| 297 | for (int i = 0; i < num_residuals(); ++i) { |
| 298 | residuals[i] = 2; |
| 299 | } |
| 300 | return true; |
| 301 | } |
| 302 | }; |
| 303 | |
| 304 | // Trivial cost function that accepts three arguments. |
| 305 | class TernaryCostFunction: public CostFunction { |
| 306 | public: |
| 307 | TernaryCostFunction(int num_residuals, |
| 308 | int16 parameter_block1_size, |
| 309 | int16 parameter_block2_size, |
| 310 | int16 parameter_block3_size) { |
| 311 | set_num_residuals(num_residuals); |
| 312 | mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| 313 | mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| 314 | mutable_parameter_block_sizes()->push_back(parameter_block3_size); |
| 315 | } |
| 316 | |
| 317 | virtual bool Evaluate(double const* const* parameters, |
| 318 | double* residuals, |
| 319 | double** jacobians) const { |
| 320 | for (int i = 0; i < num_residuals(); ++i) { |
| 321 | residuals[i] = 3; |
| 322 | } |
| 323 | return true; |
| 324 | } |
| 325 | }; |
| 326 | |
| 327 | // Verify that the two ParameterBlocks are formed from the same user |
| 328 | // array and have the same LocalParameterization object. |
| 329 | void ParameterBlocksAreEquivalent(const ParameterBlock* left, |
| 330 | const ParameterBlock* right) { |
| 331 | CHECK_NOTNULL(left); |
| 332 | CHECK_NOTNULL(right); |
| 333 | EXPECT_EQ(left->user_state(), right->user_state()); |
| 334 | EXPECT_EQ(left->Size(), right->Size()); |
| 335 | EXPECT_EQ(left->Size(), right->Size()); |
| 336 | EXPECT_EQ(left->LocalSize(), right->LocalSize()); |
| 337 | EXPECT_EQ(left->local_parameterization(), right->local_parameterization()); |
| 338 | EXPECT_EQ(left->IsConstant(), right->IsConstant()); |
| 339 | } |
| 340 | |
| 341 | TEST(GradientCheckingProblemImpl, ProblemDimensionsMatch) { |
Sameer Agarwal | 451623a | 2012-07-11 11:15:25 -0700 | [diff] [blame] | 342 | // Parameter blocks with arbitrarily chosen initial values. |
| 343 | double x[] = {1.0, 2.0, 3.0}; |
| 344 | double y[] = {4.0, 5.0, 6.0, 7.0}; |
| 345 | double z[] = {8.0, 9.0, 10.0, 11.0, 12.0}; |
| 346 | double w[] = {13.0, 14.0, 15.0, 16.0}; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 347 | |
| 348 | ProblemImpl problem_impl; |
| 349 | problem_impl.AddParameterBlock(x, 3); |
| 350 | problem_impl.AddParameterBlock(y, 4); |
| 351 | problem_impl.SetParameterBlockConstant(y); |
| 352 | problem_impl.AddParameterBlock(z, 5); |
| 353 | problem_impl.AddParameterBlock(w, 4, new QuaternionParameterization); |
| 354 | problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); |
| 355 | problem_impl.AddResidualBlock(new BinaryCostFunction(6, 5, 4) , |
| 356 | NULL, z, y); |
| 357 | problem_impl.AddResidualBlock(new BinaryCostFunction(3, 3, 5), |
| 358 | new TrivialLoss, x, z); |
| 359 | problem_impl.AddResidualBlock(new BinaryCostFunction(7, 5, 3), |
| 360 | NULL, z, x); |
| 361 | problem_impl.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4), |
| 362 | NULL, z, x, y); |
| 363 | |
| 364 | scoped_ptr<ProblemImpl> gradient_checking_problem_impl( |
| 365 | CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0)); |
| 366 | |
| 367 | // The dimensions of the two problems match. |
| 368 | EXPECT_EQ(problem_impl.NumParameterBlocks(), |
| 369 | gradient_checking_problem_impl->NumParameterBlocks()); |
| 370 | EXPECT_EQ(problem_impl.NumResidualBlocks(), |
| 371 | gradient_checking_problem_impl->NumResidualBlocks()); |
| 372 | |
| 373 | EXPECT_EQ(problem_impl.NumParameters(), |
| 374 | gradient_checking_problem_impl->NumParameters()); |
| 375 | EXPECT_EQ(problem_impl.NumResiduals(), |
| 376 | gradient_checking_problem_impl->NumResiduals()); |
| 377 | |
| 378 | const Program& program = problem_impl.program(); |
| 379 | const Program& gradient_checking_program = |
| 380 | gradient_checking_problem_impl->program(); |
| 381 | |
| 382 | // Since we added the ParameterBlocks and ResidualBlocks explicitly, |
| 383 | // they should be in the same order in the two programs. It is |
| 384 | // possible that may change due to implementation changes to |
| 385 | // Program. This is not exepected to be the case and writing code to |
| 386 | // anticipate that possibility not worth the extra complexity in |
| 387 | // this test. |
| 388 | for (int i = 0; i < program.parameter_blocks().size(); ++i) { |
| 389 | ParameterBlocksAreEquivalent( |
| 390 | program.parameter_blocks()[i], |
| 391 | gradient_checking_program.parameter_blocks()[i]); |
| 392 | } |
| 393 | |
| 394 | for (int i = 0; i < program.residual_blocks().size(); ++i) { |
| 395 | // Compare the sizes of the two ResidualBlocks. |
| 396 | const ResidualBlock* original_residual_block = |
| 397 | program.residual_blocks()[i]; |
| 398 | const ResidualBlock* new_residual_block = |
| 399 | gradient_checking_program.residual_blocks()[i]; |
| 400 | EXPECT_EQ(original_residual_block->NumParameterBlocks(), |
| 401 | new_residual_block->NumParameterBlocks()); |
| 402 | EXPECT_EQ(original_residual_block->NumResiduals(), |
| 403 | new_residual_block->NumResiduals()); |
| 404 | EXPECT_EQ(original_residual_block->NumScratchDoublesForEvaluate(), |
| 405 | new_residual_block->NumScratchDoublesForEvaluate()); |
| 406 | |
| 407 | // Verify that the ParameterBlocks for the two residuals are equivalent. |
| 408 | for (int j = 0; j < original_residual_block->NumParameterBlocks(); ++j) { |
| 409 | ParameterBlocksAreEquivalent( |
| 410 | original_residual_block->parameter_blocks()[j], |
| 411 | new_residual_block->parameter_blocks()[j]); |
| 412 | } |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | } // namespace internal |
| 417 | } // namespace ceres |