Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
| 31 | #include "ceres/residual_block.h" |
| 32 | |
| 33 | #include "gtest/gtest.h" |
| 34 | #include "ceres/parameter_block.h" |
| 35 | #include "ceres/sized_cost_function.h" |
| 36 | #include "ceres/internal/eigen.h" |
| 37 | #include "ceres/local_parameterization.h" |
| 38 | |
| 39 | namespace ceres { |
| 40 | namespace internal { |
| 41 | |
| 42 | // Trivial cost function that accepts three arguments. |
| 43 | class TernaryCostFunction: public CostFunction { |
| 44 | public: |
| 45 | TernaryCostFunction(int num_residuals, |
| 46 | int16 parameter_block1_size, |
| 47 | int16 parameter_block2_size, |
| 48 | int16 parameter_block3_size) { |
| 49 | set_num_residuals(num_residuals); |
| 50 | mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| 51 | mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| 52 | mutable_parameter_block_sizes()->push_back(parameter_block3_size); |
| 53 | } |
| 54 | |
| 55 | virtual bool Evaluate(double const* const* parameters, |
| 56 | double* residuals, |
| 57 | double** jacobians) const { |
| 58 | for (int i = 0; i < num_residuals(); ++i) { |
| 59 | residuals[i] = i; |
| 60 | } |
| 61 | if (jacobians) { |
| 62 | for (int k = 0; k < 3; ++k) { |
| 63 | if (jacobians[k] != NULL) { |
| 64 | MatrixRef jacobian(jacobians[k], |
| 65 | num_residuals(), |
| 66 | parameter_block_sizes()[k]); |
| 67 | jacobian.setConstant(k); |
| 68 | } |
| 69 | } |
| 70 | } |
| 71 | return true; |
| 72 | } |
| 73 | }; |
| 74 | |
| 75 | TEST(ResidualBlock, EvaluteWithNoLossFunctionOrLocalParameterizations) { |
| 76 | double scratch[64]; |
| 77 | |
| 78 | // Prepare the parameter blocks. |
| 79 | double values_x[2]; |
Keir Mierle | 04938ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 80 | ParameterBlock x(values_x, 2, -1); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 81 | |
| 82 | double values_y[3]; |
Keir Mierle | 04938ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 83 | ParameterBlock y(values_y, 3, -1); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 84 | |
| 85 | double values_z[4]; |
Keir Mierle | 04938ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 86 | ParameterBlock z(values_z, 4, -1); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 87 | |
| 88 | vector<ParameterBlock*> parameters; |
| 89 | parameters.push_back(&x); |
| 90 | parameters.push_back(&y); |
| 91 | parameters.push_back(&z); |
| 92 | |
| 93 | TernaryCostFunction cost_function(3, 2, 3, 4); |
| 94 | |
| 95 | // Create the object under tests. |
Keir Mierle | 04938ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 96 | ResidualBlock residual_block(&cost_function, NULL, parameters, -1); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 97 | |
| 98 | // Verify getters. |
| 99 | EXPECT_EQ(&cost_function, residual_block.cost_function()); |
| 100 | EXPECT_EQ(NULL, residual_block.loss_function()); |
| 101 | EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]); |
| 102 | EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]); |
| 103 | EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]); |
| 104 | EXPECT_EQ(3, residual_block.NumScratchDoublesForEvaluate()); |
| 105 | |
| 106 | // Verify cost-only evaluation. |
| 107 | double cost; |
Sameer Agarwal | 039ff07 | 2013-02-26 09:15:39 -0800 | [diff] [blame] | 108 | residual_block.Evaluate(true, &cost, NULL, NULL, scratch); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 109 | EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); |
| 110 | |
| 111 | // Verify cost and residual evaluation. |
| 112 | double residuals[3]; |
Sameer Agarwal | 039ff07 | 2013-02-26 09:15:39 -0800 | [diff] [blame] | 113 | residual_block.Evaluate(true, &cost, residuals, NULL, scratch); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 114 | EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); |
| 115 | EXPECT_EQ(0.0, residuals[0]); |
| 116 | EXPECT_EQ(1.0, residuals[1]); |
| 117 | EXPECT_EQ(2.0, residuals[2]); |
| 118 | |
| 119 | // Verify cost, residual, and jacobian evaluation. |
| 120 | cost = 0.0; |
| 121 | VectorRef(residuals, 3).setConstant(0.0); |
| 122 | |
| 123 | Matrix jacobian_rx(3, 2); |
| 124 | Matrix jacobian_ry(3, 3); |
| 125 | Matrix jacobian_rz(3, 4); |
| 126 | |
| 127 | jacobian_rx.setConstant(-1.0); |
| 128 | jacobian_ry.setConstant(-1.0); |
| 129 | jacobian_rz.setConstant(-1.0); |
| 130 | |
| 131 | double *jacobian_ptrs[3] = { |
| 132 | jacobian_rx.data(), |
| 133 | jacobian_ry.data(), |
| 134 | jacobian_rz.data() |
| 135 | }; |
| 136 | |
Sameer Agarwal | 039ff07 | 2013-02-26 09:15:39 -0800 | [diff] [blame] | 137 | residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 138 | EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); |
| 139 | EXPECT_EQ(0.0, residuals[0]); |
| 140 | EXPECT_EQ(1.0, residuals[1]); |
| 141 | EXPECT_EQ(2.0, residuals[2]); |
| 142 | |
| 143 | EXPECT_TRUE((jacobian_rx.array() == 0.0).all()) << "\n" << jacobian_rx; |
| 144 | EXPECT_TRUE((jacobian_ry.array() == 1.0).all()) << "\n" << jacobian_ry; |
| 145 | EXPECT_TRUE((jacobian_rz.array() == 2.0).all()) << "\n" << jacobian_rz; |
| 146 | |
| 147 | // Verify cost, residual, and partial jacobian evaluation. |
| 148 | cost = 0.0; |
| 149 | VectorRef(residuals, 3).setConstant(0.0); |
| 150 | jacobian_rx.setConstant(-1.0); |
| 151 | jacobian_ry.setConstant(-1.0); |
| 152 | jacobian_rz.setConstant(-1.0); |
| 153 | |
| 154 | jacobian_ptrs[1] = NULL; // Don't compute the jacobian for y. |
| 155 | |
Sameer Agarwal | 039ff07 | 2013-02-26 09:15:39 -0800 | [diff] [blame] | 156 | residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 157 | EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); |
| 158 | EXPECT_EQ(0.0, residuals[0]); |
| 159 | EXPECT_EQ(1.0, residuals[1]); |
| 160 | EXPECT_EQ(2.0, residuals[2]); |
| 161 | |
| 162 | EXPECT_TRUE((jacobian_rx.array() == 0.0).all()) << "\n" << jacobian_rx; |
| 163 | EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry; |
| 164 | EXPECT_TRUE((jacobian_rz.array() == 2.0).all()) << "\n" << jacobian_rz; |
| 165 | } |
| 166 | |
| 167 | // Trivial cost function that accepts three arguments. |
| 168 | class LocallyParameterizedCostFunction: public SizedCostFunction<3, 2, 3, 4> { |
| 169 | public: |
| 170 | virtual bool Evaluate(double const* const* parameters, |
| 171 | double* residuals, |
| 172 | double** jacobians) const { |
| 173 | for (int i = 0; i < num_residuals(); ++i) { |
| 174 | residuals[i] = i; |
| 175 | } |
| 176 | if (jacobians) { |
| 177 | for (int k = 0; k < 3; ++k) { |
| 178 | // The jacobians here are full sized, but they are transformed in the |
| 179 | // evaluator into the "local" jacobian. In the tests, the "subset |
| 180 | // constant" parameterization is used, which should pick out columns |
| 181 | // from these jacobians. Put values in the jacobian that make this |
| 182 | // obvious; in particular, make the jacobians like this: |
| 183 | // |
| 184 | // 0 1 2 3 4 ... |
| 185 | // 0 1 2 3 4 ... |
| 186 | // 0 1 2 3 4 ... |
| 187 | // |
| 188 | if (jacobians[k] != NULL) { |
| 189 | MatrixRef jacobian(jacobians[k], |
| 190 | num_residuals(), |
| 191 | parameter_block_sizes()[k]); |
| 192 | for (int j = 0; j < k + 2; ++j) { |
| 193 | jacobian.col(j).setConstant(j); |
| 194 | } |
| 195 | } |
| 196 | } |
| 197 | } |
| 198 | return true; |
| 199 | } |
| 200 | }; |
| 201 | |
| 202 | TEST(ResidualBlock, EvaluteWithLocalParameterizations) { |
| 203 | double scratch[64]; |
| 204 | |
| 205 | // Prepare the parameter blocks. |
| 206 | double values_x[2]; |
Keir Mierle | 04938ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 207 | ParameterBlock x(values_x, 2, -1); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 208 | |
| 209 | double values_y[3]; |
Keir Mierle | 04938ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 210 | ParameterBlock y(values_y, 3, -1); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 211 | |
| 212 | double values_z[4]; |
Keir Mierle | 04938ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 213 | ParameterBlock z(values_z, 4, -1); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 214 | |
| 215 | vector<ParameterBlock*> parameters; |
| 216 | parameters.push_back(&x); |
| 217 | parameters.push_back(&y); |
| 218 | parameters.push_back(&z); |
| 219 | |
| 220 | // Make x have the first component fixed. |
| 221 | vector<int> x_fixed; |
| 222 | x_fixed.push_back(0); |
| 223 | SubsetParameterization x_parameterization(2, x_fixed); |
| 224 | x.SetParameterization(&x_parameterization); |
| 225 | |
| 226 | // Make z have the last and last component fixed. |
| 227 | vector<int> z_fixed; |
| 228 | z_fixed.push_back(2); |
| 229 | SubsetParameterization z_parameterization(4, z_fixed); |
| 230 | z.SetParameterization(&z_parameterization); |
| 231 | |
| 232 | LocallyParameterizedCostFunction cost_function; |
| 233 | |
| 234 | // Create the object under tests. |
Keir Mierle | 04938ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 235 | ResidualBlock residual_block(&cost_function, NULL, parameters, -1); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 236 | |
| 237 | // Verify getters. |
| 238 | EXPECT_EQ(&cost_function, residual_block.cost_function()); |
| 239 | EXPECT_EQ(NULL, residual_block.loss_function()); |
| 240 | EXPECT_EQ(parameters[0], residual_block.parameter_blocks()[0]); |
| 241 | EXPECT_EQ(parameters[1], residual_block.parameter_blocks()[1]); |
| 242 | EXPECT_EQ(parameters[2], residual_block.parameter_blocks()[2]); |
| 243 | EXPECT_EQ(3*(2 + 4) + 3, residual_block.NumScratchDoublesForEvaluate()); |
| 244 | |
| 245 | // Verify cost-only evaluation. |
| 246 | double cost; |
Sameer Agarwal | 039ff07 | 2013-02-26 09:15:39 -0800 | [diff] [blame] | 247 | residual_block.Evaluate(true, &cost, NULL, NULL, scratch); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 248 | EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); |
| 249 | |
| 250 | // Verify cost and residual evaluation. |
| 251 | double residuals[3]; |
Sameer Agarwal | 039ff07 | 2013-02-26 09:15:39 -0800 | [diff] [blame] | 252 | residual_block.Evaluate(true, &cost, residuals, NULL, scratch); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 253 | EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); |
| 254 | EXPECT_EQ(0.0, residuals[0]); |
| 255 | EXPECT_EQ(1.0, residuals[1]); |
| 256 | EXPECT_EQ(2.0, residuals[2]); |
| 257 | |
| 258 | // Verify cost, residual, and jacobian evaluation. |
| 259 | cost = 0.0; |
| 260 | VectorRef(residuals, 3).setConstant(0.0); |
| 261 | |
| 262 | Matrix jacobian_rx(3, 1); // Since the first element is fixed. |
| 263 | Matrix jacobian_ry(3, 3); |
| 264 | Matrix jacobian_rz(3, 3); // Since the third element is fixed. |
| 265 | |
| 266 | jacobian_rx.setConstant(-1.0); |
| 267 | jacobian_ry.setConstant(-1.0); |
| 268 | jacobian_rz.setConstant(-1.0); |
| 269 | |
| 270 | double *jacobian_ptrs[3] = { |
| 271 | jacobian_rx.data(), |
| 272 | jacobian_ry.data(), |
| 273 | jacobian_rz.data() |
| 274 | }; |
| 275 | |
Sameer Agarwal | 039ff07 | 2013-02-26 09:15:39 -0800 | [diff] [blame] | 276 | residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 277 | EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); |
| 278 | EXPECT_EQ(0.0, residuals[0]); |
| 279 | EXPECT_EQ(1.0, residuals[1]); |
| 280 | EXPECT_EQ(2.0, residuals[2]); |
| 281 | |
| 282 | Matrix expected_jacobian_rx(3, 1); |
| 283 | expected_jacobian_rx << 1.0, 1.0, 1.0; |
| 284 | |
| 285 | Matrix expected_jacobian_ry(3, 3); |
| 286 | expected_jacobian_ry << 0.0, 1.0, 2.0, |
| 287 | 0.0, 1.0, 2.0, |
| 288 | 0.0, 1.0, 2.0; |
| 289 | |
| 290 | Matrix expected_jacobian_rz(3, 3); |
| 291 | expected_jacobian_rz << 0.0, 1.0, /* 2.0, */ 3.0, // 3rd parameter constant. |
| 292 | 0.0, 1.0, /* 2.0, */ 3.0, |
| 293 | 0.0, 1.0, /* 2.0, */ 3.0; |
| 294 | |
| 295 | EXPECT_EQ(expected_jacobian_rx, jacobian_rx) |
| 296 | << "\nExpected:\n" << expected_jacobian_rx |
| 297 | << "\nActual:\n" << jacobian_rx; |
| 298 | EXPECT_EQ(expected_jacobian_ry, jacobian_ry) |
| 299 | << "\nExpected:\n" << expected_jacobian_ry |
| 300 | << "\nActual:\n" << jacobian_ry; |
| 301 | EXPECT_EQ(expected_jacobian_rz, jacobian_rz) |
| 302 | << "\nExpected:\n " << expected_jacobian_rz |
| 303 | << "\nActual:\n" << jacobian_rz; |
| 304 | |
| 305 | // Verify cost, residual, and partial jacobian evaluation. |
| 306 | cost = 0.0; |
| 307 | VectorRef(residuals, 3).setConstant(0.0); |
| 308 | jacobian_rx.setConstant(-1.0); |
| 309 | jacobian_ry.setConstant(-1.0); |
| 310 | jacobian_rz.setConstant(-1.0); |
| 311 | |
| 312 | jacobian_ptrs[1] = NULL; // Don't compute the jacobian for y. |
| 313 | |
Sameer Agarwal | 039ff07 | 2013-02-26 09:15:39 -0800 | [diff] [blame] | 314 | residual_block.Evaluate(true, &cost, residuals, jacobian_ptrs, scratch); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 315 | EXPECT_EQ(0.5 * (0*0 + 1*1 + 2*2), cost); |
| 316 | EXPECT_EQ(0.0, residuals[0]); |
| 317 | EXPECT_EQ(1.0, residuals[1]); |
| 318 | EXPECT_EQ(2.0, residuals[2]); |
| 319 | |
| 320 | EXPECT_EQ(expected_jacobian_rx, jacobian_rx); |
| 321 | EXPECT_TRUE((jacobian_ry.array() == -1.0).all()) << "\n" << jacobian_ry; |
| 322 | EXPECT_EQ(expected_jacobian_rz, jacobian_rz); |
| 323 | } |
| 324 | |
| 325 | } // namespace internal |
| 326 | } // namespace ceres |