Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #ifndef CERES_NO_SUITESPARSE |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 32 | #include "ceres/suitesparse.h" |
| 33 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 34 | #include <vector> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 35 | #include "cholmod.h" |
Sameer Agarwal | 344c09f | 2013-04-20 16:07:56 -0700 | [diff] [blame] | 36 | #include "ceres/compressed_col_sparse_matrix_utils.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 37 | #include "ceres/compressed_row_sparse_matrix.h" |
| 38 | #include "ceres/triplet_sparse_matrix.h" |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 39 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 40 | namespace ceres { |
| 41 | namespace internal { |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 42 | |
| 43 | SuiteSparse::SuiteSparse() { |
| 44 | cholmod_start(&cc_); |
| 45 | } |
| 46 | |
| 47 | SuiteSparse::~SuiteSparse() { |
| 48 | cholmod_finish(&cc_); |
| 49 | } |
| 50 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 51 | cholmod_sparse* SuiteSparse::CreateSparseMatrix(TripletSparseMatrix* A) { |
| 52 | cholmod_triplet triplet; |
| 53 | |
| 54 | triplet.nrow = A->num_rows(); |
| 55 | triplet.ncol = A->num_cols(); |
| 56 | triplet.nzmax = A->max_num_nonzeros(); |
| 57 | triplet.nnz = A->num_nonzeros(); |
| 58 | triplet.i = reinterpret_cast<void*>(A->mutable_rows()); |
| 59 | triplet.j = reinterpret_cast<void*>(A->mutable_cols()); |
| 60 | triplet.x = reinterpret_cast<void*>(A->mutable_values()); |
| 61 | triplet.stype = 0; // Matrix is not symmetric. |
| 62 | triplet.itype = CHOLMOD_INT; |
| 63 | triplet.xtype = CHOLMOD_REAL; |
| 64 | triplet.dtype = CHOLMOD_DOUBLE; |
| 65 | |
| 66 | return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_); |
| 67 | } |
| 68 | |
| 69 | |
| 70 | cholmod_sparse* SuiteSparse::CreateSparseMatrixTranspose( |
| 71 | TripletSparseMatrix* A) { |
| 72 | cholmod_triplet triplet; |
| 73 | |
| 74 | triplet.ncol = A->num_rows(); // swap row and columns |
| 75 | triplet.nrow = A->num_cols(); |
| 76 | triplet.nzmax = A->max_num_nonzeros(); |
| 77 | triplet.nnz = A->num_nonzeros(); |
| 78 | |
| 79 | // swap rows and columns |
| 80 | triplet.j = reinterpret_cast<void*>(A->mutable_rows()); |
| 81 | triplet.i = reinterpret_cast<void*>(A->mutable_cols()); |
| 82 | triplet.x = reinterpret_cast<void*>(A->mutable_values()); |
| 83 | triplet.stype = 0; // Matrix is not symmetric. |
| 84 | triplet.itype = CHOLMOD_INT; |
| 85 | triplet.xtype = CHOLMOD_REAL; |
| 86 | triplet.dtype = CHOLMOD_DOUBLE; |
| 87 | |
| 88 | return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_); |
| 89 | } |
| 90 | |
Sameer Agarwal | 2560b17 | 2013-04-19 08:19:11 -0700 | [diff] [blame] | 91 | cholmod_sparse SuiteSparse::CreateSparseMatrixTransposeView( |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 92 | CompressedRowSparseMatrix* A) { |
Sameer Agarwal | 2560b17 | 2013-04-19 08:19:11 -0700 | [diff] [blame] | 93 | cholmod_sparse m; |
| 94 | m.nrow = A->num_cols(); |
| 95 | m.ncol = A->num_rows(); |
| 96 | m.nzmax = A->num_nonzeros(); |
| 97 | m.nz = NULL; |
| 98 | m.p = reinterpret_cast<void*>(A->mutable_rows()); |
| 99 | m.i = reinterpret_cast<void*>(A->mutable_cols()); |
| 100 | m.x = reinterpret_cast<void*>(A->mutable_values()); |
| 101 | m.z = NULL; |
| 102 | m.stype = 0; // Matrix is not symmetric. |
| 103 | m.itype = CHOLMOD_INT; |
| 104 | m.xtype = CHOLMOD_REAL; |
| 105 | m.dtype = CHOLMOD_DOUBLE; |
| 106 | m.sorted = 1; |
| 107 | m.packed = 1; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 108 | |
| 109 | return m; |
| 110 | } |
| 111 | |
| 112 | cholmod_dense* SuiteSparse::CreateDenseVector(const double* x, |
| 113 | int in_size, |
| 114 | int out_size) { |
| 115 | CHECK_LE(in_size, out_size); |
| 116 | cholmod_dense* v = cholmod_zeros(out_size, 1, CHOLMOD_REAL, &cc_); |
| 117 | if (x != NULL) { |
| 118 | memcpy(v->x, x, in_size*sizeof(*x)); |
| 119 | } |
| 120 | return v; |
| 121 | } |
| 122 | |
| 123 | cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A) { |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 124 | // Cholmod can try multiple re-ordering strategies to find a fill |
| 125 | // reducing ordering. Here we just tell it use AMD with automatic |
| 126 | // matrix dependence choice of supernodal versus simplicial |
| 127 | // factorization. |
| 128 | cc_.nmethods = 1; |
| 129 | cc_.method[0].ordering = CHOLMOD_AMD; |
| 130 | cc_.supernodal = CHOLMOD_AUTO; |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 131 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 132 | cholmod_factor* factor = cholmod_analyze(A, &cc_); |
| 133 | CHECK_EQ(cc_.status, CHOLMOD_OK) |
| 134 | << "Cholmod symbolic analysis failed " << cc_.status; |
| 135 | CHECK_NOTNULL(factor); |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 136 | |
| 137 | if (VLOG_IS_ON(2)) { |
| 138 | cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_); |
| 139 | } |
| 140 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 141 | return factor; |
| 142 | } |
| 143 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 144 | cholmod_factor* SuiteSparse::BlockAnalyzeCholesky( |
| 145 | cholmod_sparse* A, |
| 146 | const vector<int>& row_blocks, |
| 147 | const vector<int>& col_blocks) { |
| 148 | vector<int> ordering; |
| 149 | if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) { |
| 150 | return NULL; |
| 151 | } |
| 152 | return AnalyzeCholeskyWithUserOrdering(A, ordering); |
| 153 | } |
| 154 | |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 155 | cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering( |
| 156 | cholmod_sparse* A, |
| 157 | const vector<int>& ordering) { |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 158 | CHECK_EQ(ordering.size(), A->nrow); |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 159 | |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 160 | cc_.nmethods = 1; |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 161 | cc_.method[0].ordering = CHOLMOD_GIVEN; |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 162 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 163 | cholmod_factor* factor = |
| 164 | cholmod_analyze_p(A, const_cast<int*>(&ordering[0]), NULL, 0, &cc_); |
| 165 | CHECK_EQ(cc_.status, CHOLMOD_OK) |
| 166 | << "Cholmod symbolic analysis failed " << cc_.status; |
| 167 | CHECK_NOTNULL(factor); |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 168 | |
| 169 | if (VLOG_IS_ON(2)) { |
| 170 | cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_); |
| 171 | } |
| 172 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 173 | return factor; |
| 174 | } |
| 175 | |
Sameer Agarwal | cbdeb79 | 2013-04-22 10:18:18 -0700 | [diff] [blame] | 176 | cholmod_factor* SuiteSparse::AnalyzeCholeskyWithNaturalOrdering( |
| 177 | cholmod_sparse* A) { |
Sameer Agarwal | 2560b17 | 2013-04-19 08:19:11 -0700 | [diff] [blame] | 178 | cc_.nmethods = 1; |
| 179 | cc_.method[0].ordering = CHOLMOD_NATURAL; |
| 180 | cc_.postorder = 0; |
| 181 | |
| 182 | cholmod_factor* factor = cholmod_analyze(A, &cc_); |
| 183 | CHECK_EQ(cc_.status, CHOLMOD_OK) |
| 184 | << "Cholmod symbolic analysis failed " << cc_.status; |
| 185 | CHECK_NOTNULL(factor); |
| 186 | |
| 187 | if (VLOG_IS_ON(2)) { |
| 188 | cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_); |
| 189 | } |
| 190 | |
| 191 | return factor; |
| 192 | } |
| 193 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 194 | bool SuiteSparse::BlockAMDOrdering(const cholmod_sparse* A, |
| 195 | const vector<int>& row_blocks, |
| 196 | const vector<int>& col_blocks, |
| 197 | vector<int>* ordering) { |
| 198 | const int num_row_blocks = row_blocks.size(); |
| 199 | const int num_col_blocks = col_blocks.size(); |
| 200 | |
| 201 | // Arrays storing the compressed column structure of the matrix |
| 202 | // incoding the block sparsity of A. |
| 203 | vector<int> block_cols; |
| 204 | vector<int> block_rows; |
| 205 | |
Sameer Agarwal | 344c09f | 2013-04-20 16:07:56 -0700 | [diff] [blame] | 206 | CompressedColumnScalarMatrixToBlockMatrix(reinterpret_cast<const int*>(A->i), |
| 207 | reinterpret_cast<const int*>(A->p), |
| 208 | row_blocks, |
| 209 | col_blocks, |
| 210 | &block_rows, |
| 211 | &block_cols); |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 212 | |
| 213 | cholmod_sparse_struct block_matrix; |
| 214 | block_matrix.nrow = num_row_blocks; |
| 215 | block_matrix.ncol = num_col_blocks; |
| 216 | block_matrix.nzmax = block_rows.size(); |
| 217 | block_matrix.p = reinterpret_cast<void*>(&block_cols[0]); |
| 218 | block_matrix.i = reinterpret_cast<void*>(&block_rows[0]); |
| 219 | block_matrix.x = NULL; |
| 220 | block_matrix.stype = A->stype; |
| 221 | block_matrix.itype = CHOLMOD_INT; |
| 222 | block_matrix.xtype = CHOLMOD_PATTERN; |
| 223 | block_matrix.dtype = CHOLMOD_DOUBLE; |
| 224 | block_matrix.sorted = 1; |
| 225 | block_matrix.packed = 1; |
| 226 | |
| 227 | vector<int> block_ordering(num_row_blocks); |
| 228 | if (!cholmod_amd(&block_matrix, NULL, 0, &block_ordering[0], &cc_)) { |
| 229 | return false; |
| 230 | } |
| 231 | |
| 232 | BlockOrderingToScalarOrdering(row_blocks, block_ordering, ordering); |
| 233 | return true; |
| 234 | } |
| 235 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 236 | bool SuiteSparse::Cholesky(cholmod_sparse* A, cholmod_factor* L) { |
| 237 | CHECK_NOTNULL(A); |
| 238 | CHECK_NOTNULL(L); |
| 239 | |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 240 | // Save the current print level and silence CHOLMOD, otherwise |
| 241 | // CHOLMOD is prone to dumping stuff to stderr, which can be |
| 242 | // distracting when the error (matrix is indefinite) is not a fatal |
| 243 | // failure. |
| 244 | const int old_print_level = cc_.print; |
| 245 | cc_.print = 0; |
| 246 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 247 | cc_.quick_return_if_not_posdef = 1; |
| 248 | int status = cholmod_factorize(A, L, &cc_); |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 249 | cc_.print = old_print_level; |
| 250 | |
| 251 | // TODO(sameeragarwal): This switch statement is not consistent. It |
| 252 | // treats all kinds of CHOLMOD failures as warnings. Some of these |
| 253 | // like out of memory are definitely not warnings. The problem is |
| 254 | // that the return value Cholesky is two valued, but the state of |
| 255 | // the linear solver is really three valued. SUCCESS, |
| 256 | // NON_FATAL_FAILURE (e.g., indefinite matrix) and FATAL_FAILURE |
| 257 | // (e.g. out of memory). |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 258 | switch (cc_.status) { |
| 259 | case CHOLMOD_NOT_INSTALLED: |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 260 | LOG(WARNING) << "CHOLMOD failure: Method not installed."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 261 | return false; |
| 262 | case CHOLMOD_OUT_OF_MEMORY: |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 263 | LOG(WARNING) << "CHOLMOD failure: Out of memory."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 264 | return false; |
| 265 | case CHOLMOD_TOO_LARGE: |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 266 | LOG(WARNING) << "CHOLMOD failure: Integer overflow occured."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 267 | return false; |
| 268 | case CHOLMOD_INVALID: |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 269 | LOG(WARNING) << "CHOLMOD failure: Invalid input."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 270 | return false; |
| 271 | case CHOLMOD_NOT_POSDEF: |
| 272 | // TODO(sameeragarwal): These two warnings require more |
| 273 | // sophisticated handling going forward. For now we will be |
| 274 | // strict and treat them as failures. |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 275 | LOG(WARNING) << "CHOLMOD warning: Matrix not positive definite."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 276 | return false; |
| 277 | case CHOLMOD_DSMALL: |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 278 | LOG(WARNING) << "CHOLMOD warning: D for LDL' or diag(L) or " |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 279 | << "LL' has tiny absolute value."; |
| 280 | return false; |
| 281 | case CHOLMOD_OK: |
| 282 | if (status != 0) { |
| 283 | return true; |
| 284 | } |
Sameer Agarwal | 222ca20 | 2013-04-01 09:11:07 -0700 | [diff] [blame] | 285 | LOG(WARNING) << "CHOLMOD failure: cholmod_factorize returned zero " |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 286 | << "but cholmod_common::status is CHOLMOD_OK." |
| 287 | << "Please report this to ceres-solver@googlegroups.com."; |
| 288 | return false; |
| 289 | default: |
| 290 | LOG(WARNING) << "Unknown cholmod return code. " |
| 291 | << "Please report this to ceres-solver@googlegroups.com."; |
| 292 | return false; |
| 293 | } |
| 294 | return false; |
| 295 | } |
| 296 | |
| 297 | cholmod_dense* SuiteSparse::Solve(cholmod_factor* L, |
| 298 | cholmod_dense* b) { |
| 299 | if (cc_.status != CHOLMOD_OK) { |
| 300 | LOG(WARNING) << "CHOLMOD status NOT OK"; |
| 301 | return NULL; |
| 302 | } |
| 303 | |
| 304 | return cholmod_solve(CHOLMOD_A, L, b, &cc_); |
| 305 | } |
| 306 | |
| 307 | cholmod_dense* SuiteSparse::SolveCholesky(cholmod_sparse* A, |
| 308 | cholmod_factor* L, |
| 309 | cholmod_dense* b) { |
| 310 | CHECK_NOTNULL(A); |
| 311 | CHECK_NOTNULL(L); |
| 312 | CHECK_NOTNULL(b); |
| 313 | |
| 314 | if (Cholesky(A, L)) { |
| 315 | return Solve(L, b); |
| 316 | } |
| 317 | |
| 318 | return NULL; |
| 319 | } |
| 320 | |
Sameer Agarwal | f7ed22e | 2013-04-19 14:24:48 -0700 | [diff] [blame] | 321 | void SuiteSparse::ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, |
| 322 | int* ordering) { |
| 323 | cholmod_amd(matrix, NULL, 0, ordering, &cc_); |
| 324 | } |
| 325 | |
Sameer Agarwal | d5b93bf | 2013-04-26 21:17:49 -0700 | [diff] [blame] | 326 | void SuiteSparse::ConstrainedApproximateMinimumDegreeOrdering( |
| 327 | cholmod_sparse* matrix, |
| 328 | int* constraints, |
| 329 | int* ordering) { |
| 330 | #ifndef CERES_NO_CAMD |
| 331 | cholmod_camd(matrix, NULL, 0, constraints, ordering, &cc_); |
| 332 | #else |
| 333 | LOG(FATAL) << "Congratulations you have found a bug in Ceres." |
| 334 | << "Ceres Solver was compiled with SuiteSparse " |
| 335 | << "version 4.1.0 or less. Calling this function " |
| 336 | << "in that case is a bug. Please contact the" |
Sameer Agarwal | 0e0a454 | 2013-04-29 17:27:26 -0700 | [diff] [blame] | 337 | << "the Ceres Solver developers."; |
Sameer Agarwal | d5b93bf | 2013-04-26 21:17:49 -0700 | [diff] [blame] | 338 | #endif |
| 339 | } |
| 340 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 341 | } // namespace internal |
| 342 | } // namespace ceres |
| 343 | |
| 344 | #endif // CERES_NO_SUITESPARSE |