Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // |
| 31 | // Tests shared across evaluators. The tests try all combinations of linear |
| 32 | // solver and num_eliminate_blocks (for schur-based solvers). |
| 33 | |
| 34 | #include "ceres/evaluator.h" |
| 35 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 36 | #include "ceres/casts.h" |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 37 | #include "ceres/cost_function.h" |
| 38 | #include "ceres/crs_matrix.h" |
Sameer Agarwal | 039ff07 | 2013-02-26 09:15:39 -0800 | [diff] [blame] | 39 | #include "ceres/evaluator_test_utils.h" |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 40 | #include "ceres/internal/eigen.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 41 | #include "ceres/internal/scoped_ptr.h" |
| 42 | #include "ceres/local_parameterization.h" |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 43 | #include "ceres/problem_impl.h" |
| 44 | #include "ceres/program.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 45 | #include "ceres/sized_cost_function.h" |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 46 | #include "ceres/sparse_matrix.h" |
| 47 | #include "ceres/types.h" |
| 48 | #include "gtest/gtest.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 49 | |
| 50 | namespace ceres { |
| 51 | namespace internal { |
| 52 | |
| 53 | // TODO(keir): Consider pushing this into a common test utils file. |
| 54 | template<int kFactor, int kNumResiduals, |
| 55 | int N0 = 0, int N1 = 0, int N2 = 0, bool kSucceeds = true> |
| 56 | class ParameterIgnoringCostFunction |
| 57 | : public SizedCostFunction<kNumResiduals, N0, N1, N2> { |
| 58 | typedef SizedCostFunction<kNumResiduals, N0, N1, N2> Base; |
| 59 | public: |
| 60 | virtual bool Evaluate(double const* const* parameters, |
| 61 | double* residuals, |
| 62 | double** jacobians) const { |
| 63 | for (int i = 0; i < Base::num_residuals(); ++i) { |
| 64 | residuals[i] = i + 1; |
| 65 | } |
| 66 | if (jacobians) { |
| 67 | for (int k = 0; k < Base::parameter_block_sizes().size(); ++k) { |
| 68 | // The jacobians here are full sized, but they are transformed in the |
| 69 | // evaluator into the "local" jacobian. In the tests, the "subset |
| 70 | // constant" parameterization is used, which should pick out columns |
| 71 | // from these jacobians. Put values in the jacobian that make this |
| 72 | // obvious; in particular, make the jacobians like this: |
| 73 | // |
| 74 | // 1 2 3 4 ... |
| 75 | // 1 2 3 4 ... .* kFactor |
| 76 | // 1 2 3 4 ... |
| 77 | // |
| 78 | // where the multiplication by kFactor makes it easier to distinguish |
| 79 | // between Jacobians of different residuals for the same parameter. |
| 80 | if (jacobians[k] != NULL) { |
| 81 | MatrixRef jacobian(jacobians[k], |
| 82 | Base::num_residuals(), |
| 83 | Base::parameter_block_sizes()[k]); |
| 84 | for (int j = 0; j < Base::parameter_block_sizes()[k]; ++j) { |
| 85 | jacobian.col(j).setConstant(kFactor * (j + 1)); |
| 86 | } |
| 87 | } |
| 88 | } |
| 89 | } |
| 90 | return kSucceeds; |
| 91 | } |
| 92 | }; |
| 93 | |
| 94 | struct EvaluatorTest |
| 95 | : public ::testing::TestWithParam<pair<LinearSolverType, int> > { |
| 96 | Evaluator* CreateEvaluator(Program* program) { |
| 97 | // This program is straight from the ProblemImpl, and so has no index/offset |
| 98 | // yet; compute it here as required by the evalutor implementations. |
| 99 | program->SetParameterOffsetsAndIndex(); |
| 100 | |
| 101 | VLOG(1) << "Creating evaluator with type: " << GetParam().first |
| 102 | << " and num_eliminate_blocks: " << GetParam().second; |
| 103 | Evaluator::Options options; |
| 104 | options.linear_solver_type = GetParam().first; |
| 105 | options.num_eliminate_blocks = GetParam().second; |
| 106 | string error; |
| 107 | return Evaluator::Create(options, program, &error); |
| 108 | } |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 109 | |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 110 | void EvaluateAndCompare(ProblemImpl *problem, |
| 111 | int expected_num_rows, |
| 112 | int expected_num_cols, |
| 113 | double expected_cost, |
| 114 | const double* expected_residuals, |
| 115 | const double* expected_gradient, |
| 116 | const double* expected_jacobian) { |
| 117 | scoped_ptr<Evaluator> evaluator( |
| 118 | CreateEvaluator(problem->mutable_program())); |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 119 | int num_residuals = expected_num_rows; |
| 120 | int num_parameters = expected_num_cols; |
| 121 | |
| 122 | double cost = -1; |
| 123 | |
| 124 | Vector residuals(num_residuals); |
| 125 | residuals.setConstant(-2000); |
| 126 | |
| 127 | Vector gradient(num_parameters); |
| 128 | gradient.setConstant(-3000); |
| 129 | |
| 130 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 131 | |
| 132 | ASSERT_EQ(expected_num_rows, evaluator->NumResiduals()); |
| 133 | ASSERT_EQ(expected_num_cols, evaluator->NumEffectiveParameters()); |
| 134 | ASSERT_EQ(expected_num_rows, jacobian->num_rows()); |
| 135 | ASSERT_EQ(expected_num_cols, jacobian->num_cols()); |
| 136 | |
| 137 | vector<double> state(evaluator->NumParameters()); |
| 138 | |
| 139 | ASSERT_TRUE(evaluator->Evaluate( |
| 140 | &state[0], |
| 141 | &cost, |
| 142 | expected_residuals != NULL ? &residuals[0] : NULL, |
| 143 | expected_gradient != NULL ? &gradient[0] : NULL, |
| 144 | expected_jacobian != NULL ? jacobian.get() : NULL)); |
| 145 | |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 146 | Matrix actual_jacobian; |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 147 | if (expected_jacobian != NULL) { |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 148 | jacobian->ToDenseMatrix(&actual_jacobian); |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 149 | } |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 150 | |
| 151 | CompareEvaluations(expected_num_rows, |
| 152 | expected_num_cols, |
| 153 | expected_cost, |
| 154 | expected_residuals, |
| 155 | expected_gradient, |
| 156 | expected_jacobian, |
| 157 | cost, |
| 158 | &residuals[0], |
| 159 | &gradient[0], |
| 160 | actual_jacobian.data()); |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 161 | } |
| 162 | |
| 163 | // Try all combinations of parameters for the evaluator. |
| 164 | void CheckAllEvaluationCombinations(const ExpectedEvaluation &expected) { |
| 165 | for (int i = 0; i < 8; ++i) { |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 166 | EvaluateAndCompare(&problem, |
| 167 | expected.num_rows, |
| 168 | expected.num_cols, |
| 169 | expected.cost, |
| 170 | (i & 1) ? expected.residuals : NULL, |
| 171 | (i & 2) ? expected.gradient : NULL, |
| 172 | (i & 4) ? expected.jacobian : NULL); |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 173 | } |
| 174 | } |
| 175 | |
| 176 | // The values are ignored completely by the cost function. |
| 177 | double x[2]; |
| 178 | double y[3]; |
| 179 | double z[4]; |
| 180 | |
| 181 | ProblemImpl problem; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 182 | }; |
| 183 | |
| 184 | void SetSparseMatrixConstant(SparseMatrix* sparse_matrix, double value) { |
| 185 | VectorRef(sparse_matrix->mutable_values(), |
| 186 | sparse_matrix->num_nonzeros()).setConstant(value); |
| 187 | } |
| 188 | |
| 189 | TEST_P(EvaluatorTest, SingleResidualProblem) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 190 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, |
| 191 | NULL, |
| 192 | x, y, z); |
| 193 | |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 194 | ExpectedEvaluation expected = { |
| 195 | // Rows/columns |
| 196 | 3, 9, |
| 197 | // Cost |
| 198 | 7.0, |
| 199 | // Residuals |
| 200 | { 1.0, 2.0, 3.0 }, |
| 201 | // Gradient |
| 202 | { 6.0, 12.0, // x |
| 203 | 6.0, 12.0, 18.0, // y |
| 204 | 6.0, 12.0, 18.0, 24.0, // z |
| 205 | }, |
| 206 | // Jacobian |
| 207 | // x y z |
| 208 | { 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 209 | 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 210 | 1, 2, 1, 2, 3, 1, 2, 3, 4 |
| 211 | } |
| 212 | }; |
| 213 | CheckAllEvaluationCombinations(expected); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 214 | } |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 215 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 216 | TEST_P(EvaluatorTest, SingleResidualProblemWithPermutedParameters) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 217 | // Add the parameters in explicit order to force the ordering in the program. |
| 218 | problem.AddParameterBlock(x, 2); |
| 219 | problem.AddParameterBlock(y, 3); |
| 220 | problem.AddParameterBlock(z, 4); |
| 221 | |
| 222 | // Then use a cost function which is similar to the others, but swap around |
| 223 | // the ordering of the parameters to the cost function. This shouldn't affect |
| 224 | // the jacobian evaluation, but requires explicit handling in the evaluators. |
| 225 | // At one point the compressed row evaluator had a bug that went undetected |
| 226 | // for a long time, since by chance most users added parameters to the problem |
| 227 | // in the same order that they occured as parameters to a cost function. |
| 228 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 4, 3, 2>, |
| 229 | NULL, |
| 230 | z, y, x); |
| 231 | |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 232 | ExpectedEvaluation expected = { |
| 233 | // Rows/columns |
| 234 | 3, 9, |
| 235 | // Cost |
| 236 | 7.0, |
| 237 | // Residuals |
| 238 | { 1.0, 2.0, 3.0 }, |
| 239 | // Gradient |
| 240 | { 6.0, 12.0, // x |
| 241 | 6.0, 12.0, 18.0, // y |
| 242 | 6.0, 12.0, 18.0, 24.0, // z |
| 243 | }, |
| 244 | // Jacobian |
| 245 | // x y z |
| 246 | { 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 247 | 1, 2, 1, 2, 3, 1, 2, 3, 4, |
| 248 | 1, 2, 1, 2, 3, 1, 2, 3, 4 |
| 249 | } |
| 250 | }; |
| 251 | CheckAllEvaluationCombinations(expected); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 252 | } |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 253 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 254 | TEST_P(EvaluatorTest, SingleResidualProblemWithNuisanceParameters) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 255 | // These parameters are not used. |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 256 | double a[2]; |
| 257 | double b[1]; |
| 258 | double c[1]; |
| 259 | double d[3]; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 260 | |
| 261 | // Add the parameters in a mixed order so the Jacobian is "checkered" with the |
| 262 | // values from the other parameters. |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 263 | problem.AddParameterBlock(a, 2); |
| 264 | problem.AddParameterBlock(x, 2); |
| 265 | problem.AddParameterBlock(b, 1); |
| 266 | problem.AddParameterBlock(y, 3); |
| 267 | problem.AddParameterBlock(c, 1); |
| 268 | problem.AddParameterBlock(z, 4); |
| 269 | problem.AddParameterBlock(d, 3); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 270 | |
| 271 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, |
| 272 | NULL, |
| 273 | x, y, z); |
| 274 | |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 275 | ExpectedEvaluation expected = { |
| 276 | // Rows/columns |
| 277 | 3, 16, |
| 278 | // Cost |
| 279 | 7.0, |
| 280 | // Residuals |
| 281 | { 1.0, 2.0, 3.0 }, |
| 282 | // Gradient |
| 283 | { 0.0, 0.0, // a |
| 284 | 6.0, 12.0, // x |
| 285 | 0.0, // b |
| 286 | 6.0, 12.0, 18.0, // y |
| 287 | 0.0, // c |
| 288 | 6.0, 12.0, 18.0, 24.0, // z |
| 289 | 0.0, 0.0, 0.0, // d |
| 290 | }, |
| 291 | // Jacobian |
| 292 | // a x b y c z d |
| 293 | { 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, |
| 294 | 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, |
| 295 | 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0 |
| 296 | } |
| 297 | }; |
| 298 | CheckAllEvaluationCombinations(expected); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 299 | } |
| 300 | |
| 301 | TEST_P(EvaluatorTest, MultipleResidualProblem) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 302 | // Add the parameters in explicit order to force the ordering in the program. |
| 303 | problem.AddParameterBlock(x, 2); |
| 304 | problem.AddParameterBlock(y, 3); |
| 305 | problem.AddParameterBlock(z, 4); |
| 306 | |
| 307 | // f(x, y) in R^2 |
| 308 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, |
| 309 | NULL, |
| 310 | x, y); |
| 311 | |
| 312 | // g(x, z) in R^3 |
| 313 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, |
| 314 | NULL, |
| 315 | x, z); |
| 316 | |
| 317 | // h(y, z) in R^4 |
| 318 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, |
| 319 | NULL, |
| 320 | y, z); |
| 321 | |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 322 | ExpectedEvaluation expected = { |
| 323 | // Rows/columns |
| 324 | 9, 9, |
| 325 | // Cost |
| 326 | // f g h |
| 327 | ( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, |
| 328 | // Residuals |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 329 | { 1.0, 2.0, // f |
| 330 | 1.0, 2.0, 3.0, // g |
| 331 | 1.0, 2.0, 3.0, 4.0 // h |
| 332 | }, |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 333 | // Gradient |
| 334 | { 15.0, 30.0, // x |
| 335 | 33.0, 66.0, 99.0, // y |
| 336 | 42.0, 84.0, 126.0, 168.0 // z |
| 337 | }, |
| 338 | // Jacobian |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 339 | // x y z |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 340 | { /* f(x, y) */ 1, 2, 1, 2, 3, 0, 0, 0, 0, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 341 | 1, 2, 1, 2, 3, 0, 0, 0, 0, |
| 342 | |
| 343 | /* g(x, z) */ 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 344 | 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 345 | 2, 4, 0, 0, 0, 2, 4, 6, 8, |
| 346 | |
| 347 | /* h(y, z) */ 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 348 | 0, 0, 3, 6, 9, 3, 6, 9, 12, |
| 349 | 0, 0, 3, 6, 9, 3, 6, 9, 12, |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 350 | 0, 0, 3, 6, 9, 3, 6, 9, 12 |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 351 | } |
| 352 | }; |
| 353 | CheckAllEvaluationCombinations(expected); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 354 | } |
| 355 | |
| 356 | TEST_P(EvaluatorTest, MultipleResidualsWithLocalParameterizations) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 357 | // Add the parameters in explicit order to force the ordering in the program. |
| 358 | problem.AddParameterBlock(x, 2); |
| 359 | |
| 360 | // Fix y's first dimension. |
| 361 | vector<int> y_fixed; |
| 362 | y_fixed.push_back(0); |
| 363 | problem.AddParameterBlock(y, 3, new SubsetParameterization(3, y_fixed)); |
| 364 | |
| 365 | // Fix z's second dimension. |
| 366 | vector<int> z_fixed; |
| 367 | z_fixed.push_back(1); |
| 368 | problem.AddParameterBlock(z, 4, new SubsetParameterization(4, z_fixed)); |
| 369 | |
| 370 | // f(x, y) in R^2 |
| 371 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, |
| 372 | NULL, |
| 373 | x, y); |
| 374 | |
| 375 | // g(x, z) in R^3 |
| 376 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, |
| 377 | NULL, |
| 378 | x, z); |
| 379 | |
| 380 | // h(y, z) in R^4 |
| 381 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, |
| 382 | NULL, |
| 383 | y, z); |
| 384 | |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 385 | ExpectedEvaluation expected = { |
| 386 | // Rows/columns |
| 387 | 9, 7, |
| 388 | // Cost |
| 389 | // f g h |
| 390 | ( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, |
| 391 | // Residuals |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 392 | { 1.0, 2.0, // f |
| 393 | 1.0, 2.0, 3.0, // g |
| 394 | 1.0, 2.0, 3.0, 4.0 // h |
| 395 | }, |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 396 | // Gradient |
| 397 | { 15.0, 30.0, // x |
| 398 | 66.0, 99.0, // y |
| 399 | 42.0, 126.0, 168.0 // z |
| 400 | }, |
| 401 | // Jacobian |
| 402 | // x y z |
| 403 | { /* f(x, y) */ 1, 2, 2, 3, 0, 0, 0, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 404 | 1, 2, 2, 3, 0, 0, 0, |
| 405 | |
| 406 | /* g(x, z) */ 2, 4, 0, 0, 2, 6, 8, |
| 407 | 2, 4, 0, 0, 2, 6, 8, |
| 408 | 2, 4, 0, 0, 2, 6, 8, |
| 409 | |
| 410 | /* h(y, z) */ 0, 0, 6, 9, 3, 9, 12, |
| 411 | 0, 0, 6, 9, 3, 9, 12, |
| 412 | 0, 0, 6, 9, 3, 9, 12, |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 413 | 0, 0, 6, 9, 3, 9, 12 |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 414 | } |
| 415 | }; |
| 416 | CheckAllEvaluationCombinations(expected); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 417 | } |
| 418 | |
| 419 | TEST_P(EvaluatorTest, MultipleResidualProblemWithSomeConstantParameters) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 420 | // The values are ignored completely by the cost function. |
| 421 | double x[2]; |
| 422 | double y[3]; |
| 423 | double z[4]; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 424 | |
| 425 | // Add the parameters in explicit order to force the ordering in the program. |
| 426 | problem.AddParameterBlock(x, 2); |
| 427 | problem.AddParameterBlock(y, 3); |
| 428 | problem.AddParameterBlock(z, 4); |
| 429 | |
| 430 | // f(x, y) in R^2 |
| 431 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, |
| 432 | NULL, |
| 433 | x, y); |
| 434 | |
| 435 | // g(x, z) in R^3 |
| 436 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, |
| 437 | NULL, |
| 438 | x, z); |
| 439 | |
| 440 | // h(y, z) in R^4 |
| 441 | problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, |
| 442 | NULL, |
| 443 | y, z); |
| 444 | |
| 445 | // For this test, "z" is constant. |
| 446 | problem.SetParameterBlockConstant(z); |
| 447 | |
| 448 | // Create the reduced program which is missing the fixed "z" variable. |
| 449 | // Normally, the preprocessing of the program that happens in solver_impl |
| 450 | // takes care of this, but we don't want to invoke the solver here. |
| 451 | Program reduced_program; |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 452 | vector<ParameterBlock*>* parameter_blocks = |
| 453 | problem.mutable_program()->mutable_parameter_blocks(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 454 | |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 455 | // "z" is the last parameter; save it for later and pop it off temporarily. |
| 456 | // Note that "z" will still get read during evaluation, so it cannot be |
| 457 | // deleted at this point. |
| 458 | ParameterBlock* parameter_block_z = parameter_blocks->back(); |
| 459 | parameter_blocks->pop_back(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 460 | |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 461 | ExpectedEvaluation expected = { |
| 462 | // Rows/columns |
| 463 | 9, 5, |
| 464 | // Cost |
| 465 | // f g h |
| 466 | ( 1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, |
| 467 | // Residuals |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 468 | { 1.0, 2.0, // f |
| 469 | 1.0, 2.0, 3.0, // g |
| 470 | 1.0, 2.0, 3.0, 4.0 // h |
| 471 | }, |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 472 | // Gradient |
| 473 | { 15.0, 30.0, // x |
| 474 | 33.0, 66.0, 99.0, // y |
| 475 | }, |
| 476 | // Jacobian |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 477 | // x y |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 478 | { /* f(x, y) */ 1, 2, 1, 2, 3, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 479 | 1, 2, 1, 2, 3, |
| 480 | |
| 481 | /* g(x, z) */ 2, 4, 0, 0, 0, |
| 482 | 2, 4, 0, 0, 0, |
| 483 | 2, 4, 0, 0, 0, |
| 484 | |
| 485 | /* h(y, z) */ 0, 0, 3, 6, 9, |
| 486 | 0, 0, 3, 6, 9, |
| 487 | 0, 0, 3, 6, 9, |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 488 | 0, 0, 3, 6, 9 |
| 489 | } |
| 490 | }; |
| 491 | CheckAllEvaluationCombinations(expected); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 492 | |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 493 | // Restore parameter block z, so it will get freed in a consistent way. |
| 494 | parameter_blocks->push_back(parameter_block_z); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 495 | } |
| 496 | |
| 497 | TEST_P(EvaluatorTest, EvaluatorAbortsForResidualsThatFailToEvaluate) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 498 | // Switch the return value to failure. |
| 499 | problem.AddResidualBlock( |
| 500 | new ParameterIgnoringCostFunction<20, 3, 2, 3, 4, false>, NULL, x, y, z); |
| 501 | |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 502 | // The values are ignored. |
| 503 | double state[9]; |
| 504 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 505 | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); |
| 506 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 507 | double cost; |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 508 | EXPECT_FALSE(evaluator->Evaluate(state, &cost, NULL, NULL, NULL)); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 509 | } |
| 510 | |
| 511 | // In the pairs, the first argument is the linear solver type, and the second |
| 512 | // argument is num_eliminate_blocks. Changing the num_eliminate_blocks only |
| 513 | // makes sense for the schur-based solvers. |
| 514 | // |
| 515 | // Try all values of num_eliminate_blocks that make sense given that in the |
| 516 | // tests a maximum of 4 parameter blocks are present. |
| 517 | INSTANTIATE_TEST_CASE_P( |
| 518 | LinearSolvers, |
| 519 | EvaluatorTest, |
| 520 | ::testing::Values(make_pair(DENSE_QR, 0), |
| 521 | make_pair(DENSE_SCHUR, 0), |
| 522 | make_pair(DENSE_SCHUR, 1), |
| 523 | make_pair(DENSE_SCHUR, 2), |
| 524 | make_pair(DENSE_SCHUR, 3), |
| 525 | make_pair(DENSE_SCHUR, 4), |
| 526 | make_pair(SPARSE_SCHUR, 0), |
| 527 | make_pair(SPARSE_SCHUR, 1), |
| 528 | make_pair(SPARSE_SCHUR, 2), |
| 529 | make_pair(SPARSE_SCHUR, 3), |
| 530 | make_pair(SPARSE_SCHUR, 4), |
| 531 | make_pair(ITERATIVE_SCHUR, 0), |
| 532 | make_pair(ITERATIVE_SCHUR, 1), |
| 533 | make_pair(ITERATIVE_SCHUR, 2), |
| 534 | make_pair(ITERATIVE_SCHUR, 3), |
| 535 | make_pair(ITERATIVE_SCHUR, 4), |
| 536 | make_pair(SPARSE_NORMAL_CHOLESKY, 0))); |
| 537 | |
| 538 | // Simple cost function used to check if the evaluator is sensitive to |
| 539 | // state changes. |
| 540 | class ParameterSensitiveCostFunction : public SizedCostFunction<2, 2> { |
| 541 | public: |
| 542 | virtual bool Evaluate(double const* const* parameters, |
| 543 | double* residuals, |
| 544 | double** jacobians) const { |
| 545 | double x1 = parameters[0][0]; |
| 546 | double x2 = parameters[0][1]; |
| 547 | residuals[0] = x1 * x1; |
| 548 | residuals[1] = x2 * x2; |
| 549 | |
| 550 | if (jacobians != NULL) { |
| 551 | double* jacobian = jacobians[0]; |
| 552 | if (jacobian != NULL) { |
| 553 | jacobian[0] = 2.0 * x1; |
| 554 | jacobian[1] = 0.0; |
| 555 | jacobian[2] = 0.0; |
| 556 | jacobian[3] = 2.0 * x2; |
| 557 | } |
| 558 | } |
| 559 | return true; |
| 560 | } |
| 561 | }; |
| 562 | |
| 563 | TEST(Evaluator, EvaluatorRespectsParameterChanges) { |
| 564 | ProblemImpl problem; |
| 565 | |
| 566 | double x[2]; |
| 567 | x[0] = 1.0; |
| 568 | x[1] = 1.0; |
| 569 | |
| 570 | problem.AddResidualBlock(new ParameterSensitiveCostFunction(), NULL, x); |
| 571 | Program* program = problem.mutable_program(); |
| 572 | program->SetParameterOffsetsAndIndex(); |
| 573 | |
| 574 | Evaluator::Options options; |
| 575 | options.linear_solver_type = DENSE_QR; |
| 576 | options.num_eliminate_blocks = 0; |
| 577 | string error; |
| 578 | scoped_ptr<Evaluator> evaluator(Evaluator::Create(options, program, &error)); |
| 579 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 580 | |
| 581 | ASSERT_EQ(2, jacobian->num_rows()); |
| 582 | ASSERT_EQ(2, jacobian->num_cols()); |
| 583 | |
| 584 | double state[2]; |
| 585 | state[0] = 2.0; |
| 586 | state[1] = 3.0; |
| 587 | |
| 588 | // The original state of a residual block comes from the user's |
| 589 | // state. So the original state is 1.0, 1.0, and the only way we get |
| 590 | // the 2.0, 3.0 results in the following tests is if it respects the |
| 591 | // values in the state vector. |
| 592 | |
| 593 | // Cost only; no residuals and no jacobian. |
| 594 | { |
| 595 | double cost = -1; |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 596 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL, NULL)); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 597 | EXPECT_EQ(48.5, cost); |
| 598 | } |
| 599 | |
| 600 | // Cost and residuals, no jacobian. |
| 601 | { |
| 602 | double cost = -1; |
| 603 | double residuals[2] = { -2, -2 }; |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 604 | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL, NULL)); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 605 | EXPECT_EQ(48.5, cost); |
| 606 | EXPECT_EQ(4, residuals[0]); |
| 607 | EXPECT_EQ(9, residuals[1]); |
| 608 | } |
| 609 | |
| 610 | // Cost, residuals, and jacobian. |
| 611 | { |
| 612 | double cost = -1; |
| 613 | double residuals[2] = { -2, -2}; |
| 614 | SetSparseMatrixConstant(jacobian.get(), -1); |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 615 | ASSERT_TRUE(evaluator->Evaluate(state, |
| 616 | &cost, |
| 617 | residuals, |
| 618 | NULL, |
| 619 | jacobian.get())); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 620 | EXPECT_EQ(48.5, cost); |
| 621 | EXPECT_EQ(4, residuals[0]); |
| 622 | EXPECT_EQ(9, residuals[1]); |
| 623 | Matrix actual_jacobian; |
| 624 | jacobian->ToDenseMatrix(&actual_jacobian); |
| 625 | |
| 626 | Matrix expected_jacobian(2, 2); |
| 627 | expected_jacobian |
| 628 | << 2 * state[0], 0, |
| 629 | 0, 2 * state[1]; |
| 630 | |
| 631 | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) |
| 632 | << "Actual:\n" << actual_jacobian |
| 633 | << "\nExpected:\n" << expected_jacobian; |
| 634 | } |
| 635 | } |
| 636 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 637 | } // namespace internal |
| 638 | } // namespace ceres |