Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: rennie@google.com (Jeffrey Rennie) |
| 30 | // Author: sanjay@google.com (Sanjay Ghemawat) -- renamed to FixedArray |
| 31 | |
| 32 | #ifndef CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ |
| 33 | #define CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ |
| 34 | |
| 35 | #include <cstddef> |
Sameer Agarwal | 0005dcf | 2012-06-23 13:51:33 -0700 | [diff] [blame] | 36 | #include "Eigen/Core" |
Sameer Agarwal | eb89340 | 2012-06-17 08:55:01 -0700 | [diff] [blame] | 37 | #include "ceres/internal/macros.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 38 | #include "ceres/internal/manual_constructor.h" |
Sameer Agarwal | a1eaa26 | 2013-05-09 10:02:24 -0700 | [diff] [blame] | 39 | #include "glog/logging.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 40 | |
| 41 | namespace ceres { |
| 42 | namespace internal { |
| 43 | |
| 44 | // A FixedArray<T> represents a non-resizable array of T where the |
| 45 | // length of the array does not need to be a compile time constant. |
| 46 | // |
| 47 | // FixedArray allocates small arrays inline, and large arrays on |
| 48 | // the heap. It is a good replacement for non-standard and deprecated |
| 49 | // uses of alloca() and variable length arrays (a GCC extension). |
| 50 | // |
| 51 | // FixedArray keeps performance fast for small arrays, because it |
| 52 | // avoids heap operations. It also helps reduce the chances of |
| 53 | // accidentally overflowing your stack if large input is passed to |
| 54 | // your function. |
| 55 | // |
| 56 | // Also, FixedArray is useful for writing portable code. Not all |
| 57 | // compilers support arrays of dynamic size. |
| 58 | |
| 59 | // Most users should not specify an inline_elements argument and let |
| 60 | // FixedArray<> automatically determine the number of elements |
| 61 | // to store inline based on sizeof(T). |
| 62 | // |
| 63 | // If inline_elements is specified, the FixedArray<> implementation |
| 64 | // will store arrays of length <= inline_elements inline. |
| 65 | // |
| 66 | // Finally note that unlike vector<T> FixedArray<T> will not zero-initialize |
| 67 | // simple types like int, double, bool, etc. |
| 68 | // |
| 69 | // Non-POD types will be default-initialized just like regular vectors or |
| 70 | // arrays. |
| 71 | |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 72 | #if defined(_WIN64) |
| 73 | typedef __int64 ssize_t; |
| 74 | #elif defined(_WIN32) |
| 75 | typedef __int32 ssize_t; |
| 76 | #endif |
| 77 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 78 | template <typename T, ssize_t inline_elements = -1> |
| 79 | class FixedArray { |
| 80 | public: |
| 81 | // For playing nicely with stl: |
| 82 | typedef T value_type; |
| 83 | typedef T* iterator; |
| 84 | typedef T const* const_iterator; |
| 85 | typedef T& reference; |
| 86 | typedef T const& const_reference; |
| 87 | typedef T* pointer; |
| 88 | typedef std::ptrdiff_t difference_type; |
| 89 | typedef size_t size_type; |
| 90 | |
| 91 | // REQUIRES: n >= 0 |
| 92 | // Creates an array object that can store "n" elements. |
| 93 | // |
| 94 | // FixedArray<T> will not zero-initialiaze POD (simple) types like int, |
| 95 | // double, bool, etc. |
| 96 | // Non-POD types will be default-initialized just like regular vectors or |
| 97 | // arrays. |
| 98 | explicit FixedArray(size_type n); |
| 99 | |
| 100 | // Releases any resources. |
| 101 | ~FixedArray(); |
| 102 | |
| 103 | // Returns the length of the array. |
| 104 | inline size_type size() const { return size_; } |
| 105 | |
| 106 | // Returns the memory size of the array in bytes. |
| 107 | inline size_t memsize() const { return size_ * sizeof(T); } |
| 108 | |
| 109 | // Returns a pointer to the underlying element array. |
| 110 | inline const T* get() const { return &array_[0].element; } |
| 111 | inline T* get() { return &array_[0].element; } |
| 112 | |
| 113 | // REQUIRES: 0 <= i < size() |
| 114 | // Returns a reference to the "i"th element. |
| 115 | inline T& operator[](size_type i) { |
| 116 | DCHECK_GE(i, 0); |
| 117 | DCHECK_LT(i, size_); |
| 118 | return array_[i].element; |
| 119 | } |
| 120 | |
| 121 | // REQUIRES: 0 <= i < size() |
| 122 | // Returns a reference to the "i"th element. |
| 123 | inline const T& operator[](size_type i) const { |
| 124 | DCHECK_GE(i, 0); |
| 125 | DCHECK_LT(i, size_); |
| 126 | return array_[i].element; |
| 127 | } |
| 128 | |
| 129 | inline iterator begin() { return &array_[0].element; } |
| 130 | inline iterator end() { return &array_[size_].element; } |
| 131 | |
| 132 | inline const_iterator begin() const { return &array_[0].element; } |
| 133 | inline const_iterator end() const { return &array_[size_].element; } |
| 134 | |
| 135 | private: |
| 136 | // Container to hold elements of type T. This is necessary to handle |
| 137 | // the case where T is a a (C-style) array. The size of InnerContainer |
| 138 | // and T must be the same, otherwise callers' assumptions about use |
| 139 | // of this code will be broken. |
| 140 | struct InnerContainer { |
| 141 | T element; |
| 142 | }; |
| 143 | |
| 144 | // How many elements should we store inline? |
| 145 | // a. If not specified, use a default of 256 bytes (256 bytes |
| 146 | // seems small enough to not cause stack overflow or unnecessary |
| 147 | // stack pollution, while still allowing stack allocation for |
| 148 | // reasonably long character arrays. |
| 149 | // b. Never use 0 length arrays (not ISO C++) |
| 150 | static const size_type S1 = ((inline_elements < 0) |
| 151 | ? (256/sizeof(T)) : inline_elements); |
| 152 | static const size_type S2 = (S1 <= 0) ? 1 : S1; |
| 153 | static const size_type kInlineElements = S2; |
| 154 | |
| 155 | size_type const size_; |
| 156 | InnerContainer* const array_; |
| 157 | |
| 158 | // Allocate some space, not an array of elements of type T, so that we can |
| 159 | // skip calling the T constructors and destructors for space we never use. |
Sameer Agarwal | 45ccb51 | 2012-07-15 16:32:17 -0700 | [diff] [blame] | 160 | ManualConstructor<InnerContainer> inline_space_[kInlineElements]; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 161 | }; |
| 162 | |
| 163 | // Implementation details follow |
| 164 | |
| 165 | template <class T, ssize_t S> |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 166 | inline FixedArray<T, S>::FixedArray(typename FixedArray<T, S>::size_type n) |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 167 | : size_(n), |
| 168 | array_((n <= kInlineElements |
| 169 | ? reinterpret_cast<InnerContainer*>(inline_space_) |
| 170 | : new InnerContainer[n])) { |
Ricardo Martin | 0b5b788 | 2012-09-04 15:12:53 -0700 | [diff] [blame] | 171 | DCHECK_GE(n, size_t(0)); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 172 | |
| 173 | // Construct only the elements actually used. |
| 174 | if (array_ == reinterpret_cast<InnerContainer*>(inline_space_)) { |
Ricardo Martin | 0b5b788 | 2012-09-04 15:12:53 -0700 | [diff] [blame] | 175 | for (size_t i = 0; i != size_; ++i) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 176 | inline_space_[i].Init(); |
| 177 | } |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | template <class T, ssize_t S> |
| 182 | inline FixedArray<T, S>::~FixedArray() { |
| 183 | if (array_ != reinterpret_cast<InnerContainer*>(inline_space_)) { |
| 184 | delete[] array_; |
| 185 | } else { |
Ricardo Martin | 0b5b788 | 2012-09-04 15:12:53 -0700 | [diff] [blame] | 186 | for (size_t i = 0; i != size_; ++i) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 187 | inline_space_[i].Destroy(); |
| 188 | } |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | } // namespace internal |
| 193 | } // namespace ceres |
| 194 | |
| 195 | #endif // CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ |