| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2017 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // A simple C++ interface to the SuiteSparse and CHOLMOD libraries. |
| |
| #ifndef CERES_INTERNAL_SUITESPARSE_H_ |
| #define CERES_INTERNAL_SUITESPARSE_H_ |
| |
| // This include must come before any #ifndef check on Ceres compile options. |
| #include "ceres/internal/port.h" |
| |
| #ifndef CERES_NO_SUITESPARSE |
| |
| #include <cstring> |
| #include <string> |
| #include <vector> |
| #include "SuiteSparseQR.hpp" |
| #include "ceres/linear_solver.h" |
| #include "ceres/sparse_cholesky.h" |
| #include "cholmod.h" |
| #include "glog/logging.h" |
| |
| // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled |
| // if SuiteSparse was compiled with Metis support. This makes |
| // calling and linking into cholmod_camd problematic even though it |
| // has nothing to do with Metis. This has been fixed reliably in |
| // 4.2.0. |
| // |
| // The fix was actually committed in 4.1.0, but there is |
| // some confusion about a silent update to the tar ball, so we are |
| // being conservative and choosing the next minor version where |
| // things are stable. |
| #if (SUITESPARSE_VERSION < 4002) |
| #define CERES_NO_CAMD |
| #endif |
| |
| // UF_long is deprecated but SuiteSparse_long is only available in |
| // newer versions of SuiteSparse. So for older versions of |
| // SuiteSparse, we define SuiteSparse_long to be the same as UF_long, |
| // which is what recent versions of SuiteSparse do anyways. |
| #ifndef SuiteSparse_long |
| #define SuiteSparse_long UF_long |
| #endif |
| |
| namespace ceres { |
| namespace internal { |
| |
| class CompressedRowSparseMatrix; |
| class TripletSparseMatrix; |
| |
| // The raw CHOLMOD and SuiteSparseQR libraries have a slightly |
| // cumbersome c like calling format. This object abstracts it away and |
| // provides the user with a simpler interface. The methods here cannot |
| // be static as a cholmod_common object serves as a global variable |
| // for all cholmod function calls. |
| class SuiteSparse { |
| public: |
| SuiteSparse(); |
| ~SuiteSparse(); |
| |
| // Functions for building cholmod_sparse objects from sparse |
| // matrices stored in triplet form. The matrix A is not |
| // modifed. Called owns the result. |
| cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A); |
| |
| // This function works like CreateSparseMatrix, except that the |
| // return value corresponds to A' rather than A. |
| cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A); |
| |
| // Create a cholmod_sparse wrapper around the contents of A. This is |
| // a shallow object, which refers to the contents of A and does not |
| // use the SuiteSparse machinery to allocate memory. |
| cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); |
| |
| // Given a vector x, build a cholmod_dense vector of size out_size |
| // with the first in_size entries copied from x. If x is NULL, then |
| // an all zeros vector is returned. Caller owns the result. |
| cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size); |
| |
| // The matrix A is scaled using the matrix whose diagonal is the |
| // vector scale. mode describes how scaling is applied. Possible |
| // values are CHOLMOD_ROW for row scaling - diag(scale) * A, |
| // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM |
| // for symmetric scaling which scales both the rows and the columns |
| // - diag(scale) * A * diag(scale). |
| void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) { |
| cholmod_scale(scale, mode, A, &cc_); |
| } |
| |
| // Create and return a matrix m = A * A'. Caller owns the |
| // result. The matrix A is not modified. |
| cholmod_sparse* AATranspose(cholmod_sparse* A) { |
| cholmod_sparse*m = cholmod_aat(A, NULL, A->nrow, 1, &cc_); |
| m->stype = 1; // Pay attention to the upper triangular part. |
| return m; |
| } |
| |
| // y = alpha * A * x + beta * y. Only y is modified. |
| void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta, |
| cholmod_dense* x, cholmod_dense* y) { |
| double alpha_[2] = {alpha, 0}; |
| double beta_[2] = {beta, 0}; |
| cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_); |
| } |
| |
| // Find an ordering of A or AA' (if A is unsymmetric) that minimizes |
| // the fill-in in the Cholesky factorization of the corresponding |
| // matrix. This is done by using the AMD algorithm. |
| // |
| // Using this ordering, the symbolic Cholesky factorization of A (or |
| // AA') is computed and returned. |
| // |
| // A is not modified, only the pattern of non-zeros of A is used, |
| // the actual numerical values in A are of no consequence. |
| // |
| // message contains an explanation of the failures if any. |
| // |
| // Caller owns the result. |
| cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, std::string* message); |
| |
| cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A, |
| const std::vector<int>& row_blocks, |
| const std::vector<int>& col_blocks, |
| std::string* message); |
| |
| // If A is symmetric, then compute the symbolic Cholesky |
| // factorization of A(ordering, ordering). If A is unsymmetric, then |
| // compute the symbolic factorization of |
| // A(ordering,:) A(ordering,:)'. |
| // |
| // A is not modified, only the pattern of non-zeros of A is used, |
| // the actual numerical values in A are of no consequence. |
| // |
| // message contains an explanation of the failures if any. |
| // |
| // Caller owns the result. |
| cholmod_factor* AnalyzeCholeskyWithUserOrdering( |
| cholmod_sparse* A, |
| const std::vector<int>& ordering, |
| std::string* message); |
| |
| // Perform a symbolic factorization of A without re-ordering A. No |
| // postordering of the elimination tree is performed. This ensures |
| // that the symbolic factor does not introduce an extra permutation |
| // on the matrix. See the documentation for CHOLMOD for more details. |
| // |
| // message contains an explanation of the failures if any. |
| cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A, |
| std::string* message); |
| |
| // Use the symbolic factorization in L, to find the numerical |
| // factorization for the matrix A or AA^T. Return true if |
| // successful, false otherwise. L contains the numeric factorization |
| // on return. |
| // |
| // message contains an explanation of the failures if any. |
| LinearSolverTerminationType Cholesky(cholmod_sparse* A, |
| cholmod_factor* L, |
| std::string* message); |
| |
| // Given a Cholesky factorization of a matrix A = LL^T, solve the |
| // linear system Ax = b, and return the result. If the Solve fails |
| // NULL is returned. Caller owns the result. |
| // |
| // message contains an explanation of the failures if any. |
| cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, std::string* message); |
| |
| // By virtue of the modeling layer in Ceres being block oriented, |
| // all the matrices used by Ceres are also block oriented. When |
| // doing sparse direct factorization of these matrices the |
| // fill-reducing ordering algorithms (in particular AMD) can either |
| // be run on the block or the scalar form of these matrices. The two |
| // SuiteSparse::AnalyzeCholesky methods allows the the client to |
| // compute the symbolic factorization of a matrix by either using |
| // AMD on the matrix or a user provided ordering of the rows. |
| // |
| // But since the underlying matrices are block oriented, it is worth |
| // running AMD on just the block structre of these matrices and then |
| // lifting these block orderings to a full scalar ordering. This |
| // preserves the block structure of the permuted matrix, and exposes |
| // more of the super-nodal structure of the matrix to the numerical |
| // factorization routines. |
| // |
| // Find the block oriented AMD ordering of a matrix A, whose row and |
| // column blocks are given by row_blocks, and col_blocks |
| // respectively. The matrix may or may not be symmetric. The entries |
| // of col_blocks do not need to sum to the number of columns in |
| // A. If this is the case, only the first sum(col_blocks) are used |
| // to compute the ordering. |
| bool BlockAMDOrdering(const cholmod_sparse* A, |
| const std::vector<int>& row_blocks, |
| const std::vector<int>& col_blocks, |
| std::vector<int>* ordering); |
| |
| // Find a fill reducing approximate minimum degree |
| // ordering. ordering is expected to be large enough to hold the |
| // ordering. |
| bool ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering); |
| |
| |
| // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled |
| // if SuiteSparse was compiled with Metis support. This makes |
| // calling and linking into cholmod_camd problematic even though it |
| // has nothing to do with Metis. This has been fixed reliably in |
| // 4.2.0. |
| // |
| // The fix was actually committed in 4.1.0, but there is |
| // some confusion about a silent update to the tar ball, so we are |
| // being conservative and choosing the next minor version where |
| // things are stable. |
| static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() { |
| return (SUITESPARSE_VERSION > 4001); |
| } |
| |
| // Find a fill reducing approximate minimum degree |
| // ordering. constraints is an array which associates with each |
| // column of the matrix an elimination group. i.e., all columns in |
| // group 0 are eliminated first, all columns in group 1 are |
| // eliminated next etc. This function finds a fill reducing ordering |
| // that obeys these constraints. |
| // |
| // Calling ApproximateMinimumDegreeOrdering is equivalent to calling |
| // ConstrainedApproximateMinimumDegreeOrdering with a constraint |
| // array that puts all columns in the same elimination group. |
| // |
| // If CERES_NO_CAMD is defined then calling this function will |
| // result in a crash. |
| bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, |
| int* constraints, |
| int* ordering); |
| |
| void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); } |
| void Free(cholmod_dense* m) { cholmod_free_dense(&m, &cc_); } |
| void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); } |
| |
| void Print(cholmod_sparse* m, const std::string& name) { |
| cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_); |
| } |
| |
| void Print(cholmod_dense* m, const std::string& name) { |
| cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_); |
| } |
| |
| void Print(cholmod_triplet* m, const std::string& name) { |
| cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_); |
| } |
| |
| cholmod_common* mutable_cc() { return &cc_; } |
| |
| private: |
| cholmod_common cc_; |
| }; |
| |
| class SuiteSparseCholesky : public SparseCholesky { |
| public: |
| static SuiteSparseCholesky* Create(const OrderingType ordering_type); |
| |
| // SparseCholesky interface. |
| virtual ~SuiteSparseCholesky(); |
| virtual CompressedRowSparseMatrix::StorageType StorageType() const; |
| virtual LinearSolverTerminationType Factorize( |
| CompressedRowSparseMatrix* lhs, std::string* message); |
| virtual LinearSolverTerminationType Solve(const double* rhs, |
| double* solution, |
| std::string* message); |
| private: |
| SuiteSparseCholesky(const OrderingType ordering_type); |
| |
| const OrderingType ordering_type_; |
| SuiteSparse ss_; |
| cholmod_factor* factor_; |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #else // CERES_NO_SUITESPARSE |
| |
| typedef void cholmod_factor; |
| |
| namespace ceres { |
| namespace internal { |
| |
| class SuiteSparse { |
| public: |
| // Defining this static function even when SuiteSparse is not |
| // available, allows client code to check for the presence of CAMD |
| // without checking for the absence of the CERES_NO_CAMD symbol. |
| // |
| // This is safer because the symbol maybe missing due to a user |
| // accidently not including suitesparse.h in their code when |
| // checking for the symbol. |
| static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() { |
| return false; |
| } |
| |
| void Free(void* arg) {} |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_NO_SUITESPARSE |
| |
| #endif // CERES_INTERNAL_SUITESPARSE_H_ |