Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/trust_region_minimizer.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cstdlib> |
| 35 | #include <cmath> |
| 36 | #include <cstring> |
| 37 | #include <string> |
| 38 | #include <vector> |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 39 | |
| 40 | #include "Eigen/Core" |
| 41 | #include "ceres/array_utils.h" |
| 42 | #include "ceres/evaluator.h" |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 43 | #include "ceres/internal/eigen.h" |
| 44 | #include "ceres/internal/scoped_ptr.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 45 | #include "ceres/linear_least_squares_problems.h" |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 46 | #include "ceres/sparse_matrix.h" |
| 47 | #include "ceres/trust_region_strategy.h" |
| 48 | #include "ceres/types.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 49 | #include "glog/logging.h" |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 50 | |
| 51 | namespace ceres { |
| 52 | namespace internal { |
| 53 | namespace { |
| 54 | // Small constant for various floating point issues. |
| 55 | const double kEpsilon = 1e-12; |
| 56 | } // namespace |
| 57 | |
| 58 | // Execute the list of IterationCallbacks sequentially. If any one of |
| 59 | // the callbacks does not return SOLVER_CONTINUE, then stop and return |
| 60 | // its status. |
| 61 | CallbackReturnType TrustRegionMinimizer::RunCallbacks( |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 62 | const IterationSummary& iteration_summary) { |
| 63 | for (int i = 0; i < options_.callbacks.size(); ++i) { |
| 64 | const CallbackReturnType status = |
| 65 | (*options_.callbacks[i])(iteration_summary); |
| 66 | if (status != SOLVER_CONTINUE) { |
| 67 | return status; |
| 68 | } |
| 69 | } |
| 70 | return SOLVER_CONTINUE; |
| 71 | } |
| 72 | |
| 73 | // Compute a scaling vector that is used to improve the conditioning |
| 74 | // of the Jacobian. |
| 75 | void TrustRegionMinimizer::EstimateScale(const SparseMatrix& jacobian, |
| 76 | double* scale) const { |
| 77 | jacobian.SquaredColumnNorm(scale); |
| 78 | for (int i = 0; i < jacobian.num_cols(); ++i) { |
| 79 | scale[i] = 1.0 / (kEpsilon + sqrt(scale[i])); |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | void TrustRegionMinimizer::Init(const Minimizer::Options& options) { |
| 84 | options_ = options; |
| 85 | sort(options_.lsqp_iterations_to_dump.begin(), |
| 86 | options_.lsqp_iterations_to_dump.end()); |
| 87 | } |
| 88 | |
| 89 | bool TrustRegionMinimizer::MaybeDumpLinearLeastSquaresProblem( |
| 90 | const int iteration, |
| 91 | const SparseMatrix* jacobian, |
| 92 | const double* residuals, |
| 93 | const double* step) const { |
| 94 | // TODO(sameeragarwal): Since the use of trust_region_radius has |
| 95 | // moved inside TrustRegionStrategy, its not clear how we dump the |
| 96 | // regularization vector/matrix anymore. |
| 97 | // |
| 98 | // Doing this right requires either an API change to the |
| 99 | // TrustRegionStrategy and/or how LinearLeastSquares problems are |
| 100 | // stored on disk. |
| 101 | // |
| 102 | // For now, we will just not dump the regularizer. |
| 103 | return (!binary_search(options_.lsqp_iterations_to_dump.begin(), |
| 104 | options_.lsqp_iterations_to_dump.end(), |
| 105 | iteration) || |
| 106 | DumpLinearLeastSquaresProblem(options_.lsqp_dump_directory, |
| 107 | iteration, |
| 108 | options_.lsqp_dump_format_type, |
| 109 | jacobian, |
| 110 | NULL, |
| 111 | residuals, |
| 112 | step, |
| 113 | options_.num_eliminate_blocks)); |
| 114 | } |
| 115 | |
| 116 | void TrustRegionMinimizer::Minimize(const Minimizer::Options& options, |
| 117 | double* parameters, |
| 118 | Solver::Summary* summary) { |
| 119 | time_t start_time = time(NULL); |
| 120 | time_t iteration_start_time = start_time; |
| 121 | Init(options); |
| 122 | |
| 123 | summary->termination_type = NO_CONVERGENCE; |
| 124 | summary->num_successful_steps = 0; |
| 125 | summary->num_unsuccessful_steps = 0; |
| 126 | |
| 127 | Evaluator* evaluator = CHECK_NOTNULL(options_.evaluator); |
| 128 | SparseMatrix* jacobian = CHECK_NOTNULL(options_.jacobian); |
| 129 | TrustRegionStrategy* strategy = CHECK_NOTNULL(options_.trust_region_strategy); |
| 130 | |
| 131 | const int num_parameters = evaluator->NumParameters(); |
| 132 | const int num_effective_parameters = evaluator->NumEffectiveParameters(); |
| 133 | const int num_residuals = evaluator->NumResiduals(); |
| 134 | |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 135 | VectorRef x_min(parameters, num_parameters); |
| 136 | Vector x = x_min; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 137 | double x_norm = x.norm(); |
| 138 | |
| 139 | Vector residuals(num_residuals); |
| 140 | Vector trust_region_step(num_effective_parameters); |
| 141 | Vector delta(num_effective_parameters); |
| 142 | Vector x_plus_delta(num_parameters); |
| 143 | Vector gradient(num_effective_parameters); |
| 144 | Vector model_residuals(num_residuals); |
| 145 | Vector scale(num_effective_parameters); |
| 146 | |
| 147 | IterationSummary iteration_summary; |
| 148 | iteration_summary.iteration = 0; |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 149 | iteration_summary.step_is_valid = false; |
| 150 | iteration_summary.step_is_successful = false; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 151 | iteration_summary.cost = summary->initial_cost; |
| 152 | iteration_summary.cost_change = 0.0; |
| 153 | iteration_summary.gradient_max_norm = 0.0; |
| 154 | iteration_summary.step_norm = 0.0; |
| 155 | iteration_summary.relative_decrease = 0.0; |
| 156 | iteration_summary.trust_region_radius = strategy->Radius(); |
| 157 | // TODO(sameeragarwal): Rename eta to linear_solver_accuracy or |
| 158 | // something similar across the board. |
| 159 | iteration_summary.eta = options_.eta; |
| 160 | iteration_summary.linear_solver_iterations = 0; |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 161 | iteration_summary.step_solver_time_in_seconds = 0; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 162 | |
| 163 | // Do initial cost and Jacobian evaluation. |
| 164 | double cost = 0.0; |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 165 | if (!evaluator->Evaluate(x.data(), &cost, residuals.data(), NULL, jacobian)) { |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 166 | LOG(WARNING) << "Terminating: Residual and Jacobian evaluation failed."; |
| 167 | summary->termination_type = NUMERICAL_FAILURE; |
| 168 | return; |
| 169 | } |
| 170 | |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 171 | int num_consecutive_nonmonotonic_steps = 0; |
| 172 | double minimum_cost = cost; |
| 173 | double reference_cost = cost; |
| 174 | double accumulated_reference_model_cost_change = 0.0; |
| 175 | double candidate_cost = cost; |
| 176 | double accumulated_candidate_model_cost_change = 0.0; |
| 177 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 178 | gradient.setZero(); |
| 179 | jacobian->LeftMultiply(residuals.data(), gradient.data()); |
| 180 | iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); |
| 181 | |
| 182 | if (options_.jacobi_scaling) { |
| 183 | EstimateScale(*jacobian, scale.data()); |
| 184 | jacobian->ScaleColumns(scale.data()); |
| 185 | } else { |
| 186 | scale.setOnes(); |
| 187 | } |
| 188 | |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 189 | // The initial gradient max_norm is bounded from below so that we do |
| 190 | // not divide by zero. |
| 191 | const double gradient_max_norm_0 = |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 192 | max(iteration_summary.gradient_max_norm, kEpsilon); |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 193 | const double absolute_gradient_tolerance = |
| 194 | options_.gradient_tolerance * gradient_max_norm_0; |
| 195 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 196 | if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { |
| 197 | summary->termination_type = GRADIENT_TOLERANCE; |
| 198 | VLOG(1) << "Terminating: Gradient tolerance reached." |
| 199 | << "Relative gradient max norm: " |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 200 | << iteration_summary.gradient_max_norm / gradient_max_norm_0 |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 201 | << " <= " << options_.gradient_tolerance; |
| 202 | return; |
| 203 | } |
| 204 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 205 | iteration_summary.iteration_time_in_seconds = |
| 206 | time(NULL) - iteration_start_time; |
| 207 | iteration_summary.cumulative_time_in_seconds = time(NULL) - start_time + |
| 208 | summary->preprocessor_time_in_seconds; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 209 | summary->iterations.push_back(iteration_summary); |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 210 | |
| 211 | // Call the various callbacks. |
Keir Mierle | f747183 | 2012-06-14 11:31:53 -0700 | [diff] [blame] | 212 | switch (RunCallbacks(iteration_summary)) { |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 213 | case SOLVER_TERMINATE_SUCCESSFULLY: |
| 214 | summary->termination_type = USER_SUCCESS; |
| 215 | VLOG(1) << "Terminating: User callback returned USER_SUCCESS."; |
| 216 | return; |
| 217 | case SOLVER_ABORT: |
| 218 | summary->termination_type = USER_ABORT; |
| 219 | VLOG(1) << "Terminating: User callback returned USER_ABORT."; |
| 220 | return; |
| 221 | case SOLVER_CONTINUE: |
| 222 | break; |
| 223 | default: |
| 224 | LOG(FATAL) << "Unknown type of user callback status"; |
| 225 | } |
| 226 | |
| 227 | int num_consecutive_invalid_steps = 0; |
| 228 | while (true) { |
| 229 | iteration_start_time = time(NULL); |
| 230 | if (iteration_summary.iteration >= options_.max_num_iterations) { |
| 231 | summary->termination_type = NO_CONVERGENCE; |
| 232 | VLOG(1) << "Terminating: Maximum number of iterations reached."; |
| 233 | break; |
| 234 | } |
| 235 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 236 | const double total_solver_time = iteration_start_time - start_time + |
| 237 | summary->preprocessor_time_in_seconds; |
| 238 | if (total_solver_time >= options_.max_solver_time_in_seconds) { |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 239 | summary->termination_type = NO_CONVERGENCE; |
| 240 | VLOG(1) << "Terminating: Maximum solver time reached."; |
| 241 | break; |
| 242 | } |
| 243 | |
| 244 | iteration_summary = IterationSummary(); |
| 245 | iteration_summary = summary->iterations.back(); |
| 246 | iteration_summary.iteration = summary->iterations.back().iteration + 1; |
| 247 | iteration_summary.step_is_valid = false; |
| 248 | iteration_summary.step_is_successful = false; |
| 249 | |
| 250 | const time_t strategy_start_time = time(NULL); |
| 251 | TrustRegionStrategy::PerSolveOptions per_solve_options; |
| 252 | per_solve_options.eta = options_.eta; |
Sameer Agarwal | 05292bf | 2012-08-20 07:40:45 -0700 | [diff] [blame^] | 253 | TrustRegionStrategy::Summary strategy_summary = |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 254 | strategy->ComputeStep(per_solve_options, |
| 255 | jacobian, |
| 256 | residuals.data(), |
| 257 | trust_region_step.data()); |
| 258 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 259 | iteration_summary.step_solver_time_in_seconds = |
| 260 | time(NULL) - strategy_start_time; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 261 | iteration_summary.linear_solver_iterations = |
| 262 | strategy_summary.num_iterations; |
| 263 | |
| 264 | if (!MaybeDumpLinearLeastSquaresProblem(iteration_summary.iteration, |
| 265 | jacobian, |
| 266 | residuals.data(), |
| 267 | trust_region_step.data())) { |
| 268 | LOG(FATAL) << "Tried writing linear least squares problem: " |
| 269 | << options.lsqp_dump_directory << "but failed."; |
| 270 | } |
| 271 | |
| 272 | double new_model_cost = 0.0; |
| 273 | if (strategy_summary.termination_type != FAILURE) { |
Markus Moll | 47d26bc | 2012-08-16 00:23:38 +0200 | [diff] [blame] | 274 | // new_model_cost = 1/2 |f + J * step|^2 |
| 275 | model_residuals = residuals; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 276 | jacobian->RightMultiply(trust_region_step.data(), model_residuals.data()); |
| 277 | new_model_cost = model_residuals.squaredNorm() / 2.0; |
| 278 | |
| 279 | // In exact arithmetic, this would never be the case. But poorly |
| 280 | // conditioned matrices can give rise to situations where the |
| 281 | // new_model_cost can actually be larger than half the squared |
| 282 | // norm of the residual vector. We allow for small tolerance |
| 283 | // around cost and beyond that declare the step to be invalid. |
| 284 | if (cost < (new_model_cost - kEpsilon)) { |
| 285 | VLOG(1) << "Invalid step: current_cost: " << cost |
| 286 | << " new_model_cost " << new_model_cost; |
| 287 | } else { |
| 288 | iteration_summary.step_is_valid = true; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | if (!iteration_summary.step_is_valid) { |
| 293 | // Invalid steps can happen due to a number of reasons, and we |
| 294 | // allow a limited number of successive failures, and return with |
| 295 | // NUMERICAL_FAILURE if this limit is exceeded. |
| 296 | if (++num_consecutive_invalid_steps >= |
| 297 | options_.max_num_consecutive_invalid_steps) { |
| 298 | summary->termination_type = NUMERICAL_FAILURE; |
| 299 | LOG(WARNING) << "Terminating. Number of successive invalid steps more " |
| 300 | << "than " |
| 301 | << "Solver::Options::max_num_consecutive_invalid_steps: " |
| 302 | << options_.max_num_consecutive_invalid_steps; |
| 303 | return; |
| 304 | } |
| 305 | |
| 306 | // We are going to try and reduce the trust region radius and |
| 307 | // solve again. To do this, we are going to treat this iteration |
| 308 | // as an unsuccessful iteration. Since the various callbacks are |
| 309 | // still executed, we are going to fill the iteration summary |
| 310 | // with data that assumes a step of length zero and no progress. |
| 311 | iteration_summary.cost = cost; |
| 312 | iteration_summary.cost_change = 0.0; |
| 313 | iteration_summary.gradient_max_norm = |
| 314 | summary->iterations.back().gradient_max_norm; |
| 315 | iteration_summary.step_norm = 0.0; |
| 316 | iteration_summary.relative_decrease = 0.0; |
| 317 | iteration_summary.eta = options_.eta; |
| 318 | } else { |
| 319 | // The step is numerically valid, so now we can judge its quality. |
| 320 | num_consecutive_invalid_steps = 0; |
| 321 | |
| 322 | // We allow some slop around 0, and clamp the model_cost_change |
| 323 | // at kEpsilon from below. |
| 324 | // |
| 325 | // There is probably a better way to do this, as it is going to |
| 326 | // create problems for problems where the objective function is |
| 327 | // kEpsilon close to zero. |
| 328 | const double model_cost_change = max(kEpsilon, cost - new_model_cost); |
| 329 | |
| 330 | // Undo the Jacobian column scaling. |
Markus Moll | 47d26bc | 2012-08-16 00:23:38 +0200 | [diff] [blame] | 331 | delta = (trust_region_step.array() * scale.array()).matrix(); |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 332 | iteration_summary.step_norm = delta.norm(); |
| 333 | |
| 334 | // Convergence based on parameter_tolerance. |
| 335 | const double step_size_tolerance = options_.parameter_tolerance * |
| 336 | (x_norm + options_.parameter_tolerance); |
| 337 | if (iteration_summary.step_norm <= step_size_tolerance) { |
| 338 | VLOG(1) << "Terminating. Parameter tolerance reached. " |
| 339 | << "relative step_norm: " |
| 340 | << iteration_summary.step_norm / |
| 341 | (x_norm + options_.parameter_tolerance) |
| 342 | << " <= " << options_.parameter_tolerance; |
| 343 | summary->termination_type = PARAMETER_TOLERANCE; |
| 344 | return; |
| 345 | } |
| 346 | |
| 347 | if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data())) { |
| 348 | summary->termination_type = NUMERICAL_FAILURE; |
| 349 | LOG(WARNING) << "Terminating. Failed to compute " |
| 350 | << "Plus(x, delta, x_plus_delta)."; |
| 351 | return; |
| 352 | } |
| 353 | |
| 354 | // Try this step. |
| 355 | double new_cost; |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 356 | if (!evaluator->Evaluate(x_plus_delta.data(), |
| 357 | &new_cost, |
| 358 | NULL, NULL, NULL)) { |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 359 | summary->termination_type = NUMERICAL_FAILURE; |
| 360 | LOG(WARNING) << "Terminating: Cost evaluation failed."; |
| 361 | return; |
| 362 | } |
| 363 | |
Sameer Agarwal | d28b3c8 | 2012-06-05 21:50:31 -0700 | [diff] [blame] | 364 | VLOG(2) << "old cost: " << cost << " new cost: " << new_cost; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 365 | iteration_summary.cost_change = cost - new_cost; |
| 366 | const double absolute_function_tolerance = |
| 367 | options_.function_tolerance * cost; |
| 368 | if (fabs(iteration_summary.cost_change) < absolute_function_tolerance) { |
| 369 | VLOG(1) << "Terminating. Function tolerance reached. " |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 370 | << "|cost_change|/cost: " |
| 371 | << fabs(iteration_summary.cost_change) / cost |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 372 | << " <= " << options_.function_tolerance; |
| 373 | summary->termination_type = FUNCTION_TOLERANCE; |
| 374 | return; |
| 375 | } |
| 376 | |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 377 | const double relative_decrease = |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 378 | iteration_summary.cost_change / model_cost_change; |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 379 | |
| 380 | const double historical_relative_decrease = |
| 381 | (reference_cost - new_cost) / |
| 382 | (accumulated_reference_model_cost_change + model_cost_change); |
| 383 | |
| 384 | // If monotonic steps are being used, then the relative_decrease |
| 385 | // is the usual ratio of the change in objective function value |
| 386 | // divided by the change in model cost. |
| 387 | // |
| 388 | // If non-monotonic steps are allowed, then we take the maximum |
| 389 | // of the relative_decrease and the |
| 390 | // historical_relative_decrease, which measures the increase |
| 391 | // from a reference iteration. The model cost change is |
| 392 | // estimated by accumulating the model cost changes since the |
| 393 | // reference iteration. The historical relative_decrease offers |
| 394 | // a boost to a step which is not too bad compared to the |
| 395 | // reference iteration, allowing for non-monotonic steps. |
| 396 | iteration_summary.relative_decrease = |
| 397 | options.use_nonmonotonic_steps |
| 398 | ? max(relative_decrease, historical_relative_decrease) |
| 399 | : relative_decrease; |
| 400 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 401 | iteration_summary.step_is_successful = |
| 402 | iteration_summary.relative_decrease > options_.min_relative_decrease; |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 403 | |
| 404 | if (iteration_summary.step_is_successful) { |
| 405 | accumulated_candidate_model_cost_change += model_cost_change; |
| 406 | accumulated_reference_model_cost_change += model_cost_change; |
| 407 | if (relative_decrease <= options_.min_relative_decrease) { |
| 408 | VLOG(2) << "Non-monotonic step! " |
| 409 | << " relative_decrease: " << relative_decrease |
| 410 | << " historical_relative_decrease: " |
| 411 | << historical_relative_decrease; |
| 412 | } |
| 413 | } |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 414 | } |
| 415 | |
| 416 | if (iteration_summary.step_is_successful) { |
| 417 | ++summary->num_successful_steps; |
| 418 | strategy->StepAccepted(iteration_summary.relative_decrease); |
| 419 | x = x_plus_delta; |
| 420 | x_norm = x.norm(); |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 421 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 422 | // Step looks good, evaluate the residuals and Jacobian at this |
| 423 | // point. |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 424 | if (!evaluator->Evaluate(x.data(), |
| 425 | &cost, |
| 426 | residuals.data(), |
| 427 | NULL, |
| 428 | jacobian)) { |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 429 | summary->termination_type = NUMERICAL_FAILURE; |
| 430 | LOG(WARNING) << "Terminating: Residual and Jacobian evaluation failed."; |
| 431 | return; |
| 432 | } |
| 433 | |
| 434 | gradient.setZero(); |
| 435 | jacobian->LeftMultiply(residuals.data(), gradient.data()); |
| 436 | iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); |
| 437 | |
| 438 | if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { |
| 439 | summary->termination_type = GRADIENT_TOLERANCE; |
| 440 | VLOG(1) << "Terminating: Gradient tolerance reached." |
| 441 | << "Relative gradient max norm: " |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 442 | << iteration_summary.gradient_max_norm / gradient_max_norm_0 |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 443 | << " <= " << options_.gradient_tolerance; |
| 444 | return; |
| 445 | } |
| 446 | |
| 447 | if (options_.jacobi_scaling) { |
| 448 | jacobian->ScaleColumns(scale.data()); |
| 449 | } |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 450 | |
| 451 | // Update the best, reference and candidate iterates. |
| 452 | // |
| 453 | // Based on algorithm 10.1.2 (page 357) of "Trust Region |
| 454 | // Methods" by Conn Gould & Toint, or equations 33-40 of |
| 455 | // "Non-monotone trust-region algorithms for nonlinear |
| 456 | // optimization subject to convex constraints" by Phil Toint, |
| 457 | // Mathematical Programming, 77, 1997. |
| 458 | if (cost < minimum_cost) { |
| 459 | // A step that improves solution quality was found. |
| 460 | x_min = x; |
| 461 | minimum_cost = cost; |
| 462 | // Set the candidate iterate to the current point. |
| 463 | candidate_cost = cost; |
| 464 | num_consecutive_nonmonotonic_steps = 0; |
| 465 | accumulated_candidate_model_cost_change = 0.0; |
| 466 | } else { |
| 467 | ++num_consecutive_nonmonotonic_steps; |
| 468 | if (cost > candidate_cost) { |
| 469 | // The current iterate is has a higher cost than the |
| 470 | // candidate iterate. Set the candidate to this point. |
| 471 | VLOG(2) << "Updating the candidate iterate to the current point."; |
| 472 | candidate_cost = cost; |
| 473 | accumulated_candidate_model_cost_change = 0.0; |
| 474 | } |
| 475 | |
| 476 | // At this point we have made too many non-monotonic steps and |
| 477 | // we are going to reset the value of the reference iterate so |
| 478 | // as to force the algorithm to descend. |
| 479 | // |
| 480 | // This is the case because the candidate iterate has a value |
| 481 | // greater than minimum_cost but smaller than the reference |
| 482 | // iterate. |
| 483 | if (num_consecutive_nonmonotonic_steps == |
| 484 | options.max_consecutive_nonmonotonic_steps) { |
| 485 | VLOG(2) << "Resetting the reference point to the candidate point"; |
| 486 | reference_cost = candidate_cost; |
| 487 | accumulated_reference_model_cost_change = |
| 488 | accumulated_candidate_model_cost_change; |
| 489 | } |
| 490 | } |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 491 | } else { |
| 492 | ++summary->num_unsuccessful_steps; |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 493 | if (iteration_summary.step_is_valid) { |
| 494 | strategy->StepRejected(iteration_summary.relative_decrease); |
| 495 | } else { |
| 496 | strategy->StepIsInvalid(); |
| 497 | } |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 498 | } |
| 499 | |
| 500 | iteration_summary.cost = cost + summary->fixed_cost; |
| 501 | iteration_summary.trust_region_radius = strategy->Radius(); |
| 502 | if (iteration_summary.trust_region_radius < |
| 503 | options_.min_trust_region_radius) { |
| 504 | summary->termination_type = PARAMETER_TOLERANCE; |
| 505 | VLOG(1) << "Termination. Minimum trust region radius reached."; |
| 506 | return; |
| 507 | } |
| 508 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 509 | iteration_summary.iteration_time_in_seconds = |
| 510 | time(NULL) - iteration_start_time; |
| 511 | iteration_summary.cumulative_time_in_seconds = time(NULL) - start_time + |
| 512 | summary->preprocessor_time_in_seconds; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 513 | summary->iterations.push_back(iteration_summary); |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 514 | |
Keir Mierle | f747183 | 2012-06-14 11:31:53 -0700 | [diff] [blame] | 515 | switch (RunCallbacks(iteration_summary)) { |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 516 | case SOLVER_TERMINATE_SUCCESSFULLY: |
| 517 | summary->termination_type = USER_SUCCESS; |
| 518 | VLOG(1) << "Terminating: User callback returned USER_SUCCESS."; |
| 519 | return; |
| 520 | case SOLVER_ABORT: |
| 521 | summary->termination_type = USER_ABORT; |
| 522 | VLOG(1) << "Terminating: User callback returned USER_ABORT."; |
| 523 | return; |
| 524 | case SOLVER_CONTINUE: |
| 525 | break; |
| 526 | default: |
| 527 | LOG(FATAL) << "Unknown type of user callback status"; |
| 528 | } |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | |
| 533 | } // namespace internal |
| 534 | } // namespace ceres |