Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Keir Mierle | 7492b0d | 2015-03-17 22:30:16 -0700 | [diff] [blame] | 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // TODO(sameeragarwal): row_block_counter can perhaps be replaced by |
| 32 | // Chunk::start ? |
| 33 | |
| 34 | #ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_ |
| 35 | #define CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_ |
| 36 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 37 | // Eigen has an internal threshold switching between different matrix |
| 38 | // multiplication algorithms. In particular for matrices larger than |
| 39 | // EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD it uses a cache friendly |
| 40 | // matrix matrix product algorithm that has a higher setup cost. For |
| 41 | // matrix sizes close to this threshold, especially when the matrices |
| 42 | // are thin and long, the default choice may not be optimal. This is |
| 43 | // the case for us, as the default choice causes a 30% performance |
| 44 | // regression when we moved from Eigen2 to Eigen3. |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 45 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 46 | #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 10 |
| 47 | |
Alex Stewart | ea76585 | 2014-05-07 20:46:17 +0100 | [diff] [blame] | 48 | // This include must come before any #ifndef check on Ceres compile options. |
| 49 | #include "ceres/internal/port.h" |
| 50 | |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 51 | #ifdef CERES_USE_OPENMP |
| 52 | #include <omp.h> |
| 53 | #endif |
| 54 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 55 | #include <algorithm> |
| 56 | #include <map> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 57 | #include "ceres/block_random_access_matrix.h" |
| 58 | #include "ceres/block_sparse_matrix.h" |
| 59 | #include "ceres/block_structure.h" |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 60 | #include "ceres/internal/eigen.h" |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 61 | #include "ceres/internal/fixed_array.h" |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 62 | #include "ceres/internal/scoped_ptr.h" |
Sameer Agarwal | 0859fe8 | 2017-04-09 00:45:12 -0700 | [diff] [blame] | 63 | #include "ceres/invert_psd_matrix.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 64 | #include "ceres/map_util.h" |
| 65 | #include "ceres/schur_eliminator.h" |
Sameer Agarwal | 367b65e | 2013-08-09 10:35:37 -0700 | [diff] [blame] | 66 | #include "ceres/small_blas.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 67 | #include "ceres/stl_util.h" |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 68 | #include "Eigen/Dense" |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 69 | #include "glog/logging.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 70 | |
| 71 | namespace ceres { |
| 72 | namespace internal { |
| 73 | |
| 74 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 75 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::~SchurEliminator() { |
| 76 | STLDeleteElements(&rhs_locks_); |
| 77 | } |
| 78 | |
| 79 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
Sameer Agarwal | 0859fe8 | 2017-04-09 00:45:12 -0700 | [diff] [blame] | 80 | void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::Init( |
| 81 | int num_eliminate_blocks, |
| 82 | bool assume_full_rank_ete, |
| 83 | const CompressedRowBlockStructure* bs) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 84 | CHECK_GT(num_eliminate_blocks, 0) |
| 85 | << "SchurComplementSolver cannot be initialized with " |
| 86 | << "num_eliminate_blocks = 0."; |
| 87 | |
| 88 | num_eliminate_blocks_ = num_eliminate_blocks; |
Sameer Agarwal | 0859fe8 | 2017-04-09 00:45:12 -0700 | [diff] [blame] | 89 | assume_full_rank_ete_ = assume_full_rank_ete; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 90 | |
| 91 | const int num_col_blocks = bs->cols.size(); |
| 92 | const int num_row_blocks = bs->rows.size(); |
| 93 | |
| 94 | buffer_size_ = 1; |
| 95 | chunks_.clear(); |
| 96 | lhs_row_layout_.clear(); |
| 97 | |
| 98 | int lhs_num_rows = 0; |
| 99 | // Add a map object for each block in the reduced linear system |
| 100 | // and build the row/column block structure of the reduced linear |
| 101 | // system. |
| 102 | lhs_row_layout_.resize(num_col_blocks - num_eliminate_blocks_); |
| 103 | for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) { |
| 104 | lhs_row_layout_[i - num_eliminate_blocks_] = lhs_num_rows; |
| 105 | lhs_num_rows += bs->cols[i].size; |
| 106 | } |
| 107 | |
| 108 | int r = 0; |
| 109 | // Iterate over the row blocks of A, and detect the chunks. The |
| 110 | // matrix should already have been ordered so that all rows |
| 111 | // containing the same y block are vertically contiguous. Along |
| 112 | // the way also compute the amount of space each chunk will need |
| 113 | // to perform the elimination. |
| 114 | while (r < num_row_blocks) { |
| 115 | const int chunk_block_id = bs->rows[r].cells.front().block_id; |
| 116 | if (chunk_block_id >= num_eliminate_blocks_) { |
| 117 | break; |
| 118 | } |
| 119 | |
| 120 | chunks_.push_back(Chunk()); |
| 121 | Chunk& chunk = chunks_.back(); |
| 122 | chunk.size = 0; |
| 123 | chunk.start = r; |
| 124 | int buffer_size = 0; |
| 125 | const int e_block_size = bs->cols[chunk_block_id].size; |
| 126 | |
| 127 | // Add to the chunk until the first block in the row is |
| 128 | // different than the one in the first row for the chunk. |
| 129 | while (r + chunk.size < num_row_blocks) { |
| 130 | const CompressedRow& row = bs->rows[r + chunk.size]; |
| 131 | if (row.cells.front().block_id != chunk_block_id) { |
| 132 | break; |
| 133 | } |
| 134 | |
| 135 | // Iterate over the blocks in the row, ignoring the first |
| 136 | // block since it is the one to be eliminated. |
| 137 | for (int c = 1; c < row.cells.size(); ++c) { |
| 138 | const Cell& cell = row.cells[c]; |
| 139 | if (InsertIfNotPresent( |
| 140 | &(chunk.buffer_layout), cell.block_id, buffer_size)) { |
| 141 | buffer_size += e_block_size * bs->cols[cell.block_id].size; |
| 142 | } |
| 143 | } |
| 144 | |
Sameer Agarwal | bcc865f | 2014-12-17 07:35:09 -0800 | [diff] [blame] | 145 | buffer_size_ = std::max(buffer_size, buffer_size_); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 146 | ++chunk.size; |
| 147 | } |
| 148 | |
| 149 | CHECK_GT(chunk.size, 0); |
| 150 | r += chunk.size; |
| 151 | } |
| 152 | const Chunk& chunk = chunks_.back(); |
| 153 | |
| 154 | uneliminated_row_begins_ = chunk.start + chunk.size; |
| 155 | if (num_threads_ > 1) { |
| 156 | random_shuffle(chunks_.begin(), chunks_.end()); |
| 157 | } |
| 158 | |
| 159 | buffer_.reset(new double[buffer_size_ * num_threads_]); |
| 160 | |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 161 | // chunk_outer_product_buffer_ only needs to store e_block_size * |
| 162 | // f_block_size, which is always less than buffer_size_, so we just |
| 163 | // allocate buffer_size_ per thread. |
| 164 | chunk_outer_product_buffer_.reset(new double[buffer_size_ * num_threads_]); |
| 165 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 166 | STLDeleteElements(&rhs_locks_); |
| 167 | rhs_locks_.resize(num_col_blocks - num_eliminate_blocks_); |
| 168 | for (int i = 0; i < num_col_blocks - num_eliminate_blocks_; ++i) { |
| 169 | rhs_locks_[i] = new Mutex; |
| 170 | } |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 171 | } |
| 172 | |
| 173 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 174 | void |
| 175 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 176 | Eliminate(const BlockSparseMatrix* A, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 177 | const double* b, |
| 178 | const double* D, |
| 179 | BlockRandomAccessMatrix* lhs, |
| 180 | double* rhs) { |
| 181 | if (lhs->num_rows() > 0) { |
| 182 | lhs->SetZero(); |
| 183 | VectorRef(rhs, lhs->num_rows()).setZero(); |
| 184 | } |
| 185 | |
| 186 | const CompressedRowBlockStructure* bs = A->block_structure(); |
| 187 | const int num_col_blocks = bs->cols.size(); |
| 188 | |
| 189 | // Add the diagonal to the schur complement. |
| 190 | if (D != NULL) { |
| 191 | #pragma omp parallel for num_threads(num_threads_) schedule(dynamic) |
| 192 | for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) { |
| 193 | const int block_id = i - num_eliminate_blocks_; |
| 194 | int r, c, row_stride, col_stride; |
| 195 | CellInfo* cell_info = lhs->GetCell(block_id, block_id, |
| 196 | &r, &c, |
| 197 | &row_stride, &col_stride); |
| 198 | if (cell_info != NULL) { |
| 199 | const int block_size = bs->cols[i].size; |
Sameer Agarwal | 4bf3868 | 2015-08-09 15:24:45 -0700 | [diff] [blame] | 200 | typename EigenTypes<Eigen::Dynamic>::ConstVectorRef |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 201 | diag(D + bs->cols[i].position, block_size); |
| 202 | |
Keir Mierle | ff71d74 | 2012-08-10 17:05:15 -0700 | [diff] [blame] | 203 | CeresMutexLock l(&cell_info->m); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 204 | MatrixRef m(cell_info->values, row_stride, col_stride); |
| 205 | m.block(r, c, block_size, block_size).diagonal() |
| 206 | += diag.array().square().matrix(); |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | |
Sameer Agarwal | 4bf3868 | 2015-08-09 15:24:45 -0700 | [diff] [blame] | 211 | // Eliminate y blocks one chunk at a time. For each chunk, compute |
| 212 | // the entries of the normal equations and the gradient vector block |
| 213 | // corresponding to the y block and then apply Gaussian elimination |
| 214 | // to them. The matrix ete stores the normal matrix corresponding to |
| 215 | // the block being eliminated and array buffer_ contains the |
| 216 | // non-zero blocks in the row corresponding to this y block in the |
| 217 | // normal equations. This computation is done in |
| 218 | // ChunkDiagonalBlockAndGradient. UpdateRhs then applies gaussian |
| 219 | // elimination to the rhs of the normal equations, updating the rhs |
| 220 | // of the reduced linear system by modifying rhs blocks for all the |
| 221 | // z blocks that share a row block/residual term with the y |
| 222 | // block. EliminateRowOuterProduct does the corresponding operation |
| 223 | // for the lhs of the reduced linear system. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 224 | #pragma omp parallel for num_threads(num_threads_) schedule(dynamic) |
| 225 | for (int i = 0; i < chunks_.size(); ++i) { |
| 226 | #ifdef CERES_USE_OPENMP |
| 227 | int thread_id = omp_get_thread_num(); |
| 228 | #else |
| 229 | int thread_id = 0; |
| 230 | #endif |
| 231 | double* buffer = buffer_.get() + thread_id * buffer_size_; |
| 232 | const Chunk& chunk = chunks_[i]; |
| 233 | const int e_block_id = bs->rows[chunk.start].cells.front().block_id; |
| 234 | const int e_block_size = bs->cols[e_block_id].size; |
| 235 | |
| 236 | VectorRef(buffer, buffer_size_).setZero(); |
| 237 | |
| 238 | typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix |
| 239 | ete(e_block_size, e_block_size); |
| 240 | |
| 241 | if (D != NULL) { |
| 242 | const typename EigenTypes<kEBlockSize>::ConstVectorRef |
| 243 | diag(D + bs->cols[e_block_id].position, e_block_size); |
| 244 | ete = diag.array().square().matrix().asDiagonal(); |
| 245 | } else { |
| 246 | ete.setZero(); |
| 247 | } |
| 248 | |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 249 | FixedArray<double, 8> g(e_block_size); |
| 250 | typename EigenTypes<kEBlockSize>::VectorRef gref(g.get(), e_block_size); |
| 251 | gref.setZero(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 252 | |
| 253 | // We are going to be computing |
| 254 | // |
| 255 | // S += F'F - F'E(E'E)^{-1}E'F |
| 256 | // |
| 257 | // for each Chunk. The computation is broken down into a number of |
| 258 | // function calls as below. |
| 259 | |
| 260 | // Compute the outer product of the e_blocks with themselves (ete |
| 261 | // = E'E). Compute the product of the e_blocks with the |
| 262 | // corresonding f_blocks (buffer = E'F), the gradient of the terms |
| 263 | // in this chunk (g) and add the outer product of the f_blocks to |
| 264 | // Schur complement (S += F'F). |
| 265 | ChunkDiagonalBlockAndGradient( |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 266 | chunk, A, b, chunk.start, &ete, g.get(), buffer, lhs); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 267 | |
| 268 | // Normally one wouldn't compute the inverse explicitly, but |
| 269 | // e_block_size will typically be a small number like 3, in |
| 270 | // which case its much faster to compute the inverse once and |
| 271 | // use it to multiply other matrices/vectors instead of doing a |
| 272 | // Solve call over and over again. |
Sameer Agarwal | e712ce1 | 2015-04-07 14:11:10 -0700 | [diff] [blame] | 273 | typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix inverse_ete = |
Sameer Agarwal | 0859fe8 | 2017-04-09 00:45:12 -0700 | [diff] [blame] | 274 | InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 275 | |
| 276 | // For the current chunk compute and update the rhs of the reduced |
| 277 | // linear system. |
| 278 | // |
| 279 | // rhs = F'b - F'E(E'E)^(-1) E'b |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 280 | |
| 281 | FixedArray<double, 8> inverse_ete_g(e_block_size); |
| 282 | MatrixVectorMultiply<kEBlockSize, kEBlockSize, 0>( |
Sameer Agarwal | e6707b2 | 2013-04-16 15:44:23 -0700 | [diff] [blame] | 283 | inverse_ete.data(), |
| 284 | e_block_size, |
| 285 | e_block_size, |
| 286 | g.get(), |
| 287 | inverse_ete_g.get()); |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 288 | |
| 289 | UpdateRhs(chunk, A, b, chunk.start, inverse_ete_g.get(), rhs); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 290 | |
| 291 | // S -= F'E(E'E)^{-1}E'F |
| 292 | ChunkOuterProduct(bs, inverse_ete, buffer, chunk.buffer_layout, lhs); |
| 293 | } |
| 294 | |
| 295 | // For rows with no e_blocks, the schur complement update reduces to |
| 296 | // S += F'F. |
| 297 | NoEBlockRowsUpdate(A, b, uneliminated_row_begins_, lhs, rhs); |
| 298 | } |
| 299 | |
| 300 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 301 | void |
| 302 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 303 | BackSubstitute(const BlockSparseMatrix* A, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 304 | const double* b, |
| 305 | const double* D, |
| 306 | const double* z, |
| 307 | double* y) { |
| 308 | const CompressedRowBlockStructure* bs = A->block_structure(); |
| 309 | #pragma omp parallel for num_threads(num_threads_) schedule(dynamic) |
| 310 | for (int i = 0; i < chunks_.size(); ++i) { |
| 311 | const Chunk& chunk = chunks_[i]; |
| 312 | const int e_block_id = bs->rows[chunk.start].cells.front().block_id; |
| 313 | const int e_block_size = bs->cols[e_block_id].size; |
| 314 | |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 315 | double* y_ptr = y + bs->cols[e_block_id].position; |
| 316 | typename EigenTypes<kEBlockSize>::VectorRef y_block(y_ptr, e_block_size); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 317 | |
| 318 | typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix |
| 319 | ete(e_block_size, e_block_size); |
| 320 | if (D != NULL) { |
| 321 | const typename EigenTypes<kEBlockSize>::ConstVectorRef |
| 322 | diag(D + bs->cols[e_block_id].position, e_block_size); |
| 323 | ete = diag.array().square().matrix().asDiagonal(); |
| 324 | } else { |
| 325 | ete.setZero(); |
| 326 | } |
| 327 | |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 328 | const double* values = A->values(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 329 | for (int j = 0; j < chunk.size; ++j) { |
| 330 | const CompressedRow& row = bs->rows[chunk.start + j]; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 331 | const Cell& e_cell = row.cells.front(); |
| 332 | DCHECK_EQ(e_block_id, e_cell.block_id); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 333 | |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 334 | FixedArray<double, 8> sj(row.block.size); |
| 335 | |
| 336 | typename EigenTypes<kRowBlockSize>::VectorRef(sj.get(), row.block.size) = |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 337 | typename EigenTypes<kRowBlockSize>::ConstVectorRef |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 338 | (b + bs->rows[chunk.start + j].block.position, row.block.size); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 339 | |
| 340 | for (int c = 1; c < row.cells.size(); ++c) { |
| 341 | const int f_block_id = row.cells[c].block_id; |
| 342 | const int f_block_size = bs->cols[f_block_id].size; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 343 | const int r_block = f_block_id - num_eliminate_blocks_; |
| 344 | |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 345 | MatrixVectorMultiply<kRowBlockSize, kFBlockSize, -1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 346 | values + row.cells[c].position, row.block.size, f_block_size, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 347 | z + lhs_row_layout_[r_block], |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 348 | sj.get()); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 349 | } |
| 350 | |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 351 | MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 352 | values + e_cell.position, row.block.size, e_block_size, |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 353 | sj.get(), |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 354 | y_ptr); |
| 355 | |
| 356 | MatrixTransposeMatrixMultiply |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 357 | <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 358 | values + e_cell.position, row.block.size, e_block_size, |
| 359 | values + e_cell.position, row.block.size, e_block_size, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 360 | ete.data(), 0, 0, e_block_size, e_block_size); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 361 | } |
| 362 | |
Sameer Agarwal | 0859fe8 | 2017-04-09 00:45:12 -0700 | [diff] [blame] | 363 | y_block = InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete) |
| 364 | * y_block; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 365 | } |
| 366 | } |
| 367 | |
| 368 | // Update the rhs of the reduced linear system. Compute |
| 369 | // |
| 370 | // F'b - F'E(E'E)^(-1) E'b |
| 371 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 372 | void |
| 373 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 374 | UpdateRhs(const Chunk& chunk, |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 375 | const BlockSparseMatrix* A, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 376 | const double* b, |
| 377 | int row_block_counter, |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 378 | const double* inverse_ete_g, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 379 | double* rhs) { |
| 380 | const CompressedRowBlockStructure* bs = A->block_structure(); |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 381 | const int e_block_id = bs->rows[chunk.start].cells.front().block_id; |
| 382 | const int e_block_size = bs->cols[e_block_id].size; |
| 383 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 384 | int b_pos = bs->rows[row_block_counter].block.position; |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 385 | const double* values = A->values(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 386 | for (int j = 0; j < chunk.size; ++j) { |
| 387 | const CompressedRow& row = bs->rows[row_block_counter + j]; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 388 | const Cell& e_cell = row.cells.front(); |
| 389 | |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 390 | typename EigenTypes<kRowBlockSize>::Vector sj = |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 391 | typename EigenTypes<kRowBlockSize>::ConstVectorRef |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 392 | (b + b_pos, row.block.size); |
| 393 | |
| 394 | MatrixVectorMultiply<kRowBlockSize, kEBlockSize, -1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 395 | values + e_cell.position, row.block.size, e_block_size, |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 396 | inverse_ete_g, sj.data()); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 397 | |
| 398 | for (int c = 1; c < row.cells.size(); ++c) { |
| 399 | const int block_id = row.cells[c].block_id; |
| 400 | const int block_size = bs->cols[block_id].size; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 401 | const int block = block_id - num_eliminate_blocks_; |
Keir Mierle | ff71d74 | 2012-08-10 17:05:15 -0700 | [diff] [blame] | 402 | CeresMutexLock l(rhs_locks_[block]); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 403 | MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 404 | values + row.cells[c].position, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 405 | row.block.size, block_size, |
| 406 | sj.data(), rhs + lhs_row_layout_[block]); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 407 | } |
| 408 | b_pos += row.block.size; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | // Given a Chunk - set of rows with the same e_block, e.g. in the |
| 413 | // following Chunk with two rows. |
| 414 | // |
| 415 | // E F |
| 416 | // [ y11 0 0 0 | z11 0 0 0 z51] |
| 417 | // [ y12 0 0 0 | z12 z22 0 0 0] |
| 418 | // |
| 419 | // this function computes twp matrices. The diagonal block matrix |
| 420 | // |
| 421 | // ete = y11 * y11' + y12 * y12' |
| 422 | // |
| 423 | // and the off diagonal blocks in the Guass Newton Hessian. |
| 424 | // |
| 425 | // buffer = [y11'(z11 + z12), y12' * z22, y11' * z51] |
| 426 | // |
| 427 | // which are zero compressed versions of the block sparse matrices E'E |
| 428 | // and E'F. |
| 429 | // |
| 430 | // and the gradient of the e_block, E'b. |
| 431 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 432 | void |
| 433 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 434 | ChunkDiagonalBlockAndGradient( |
| 435 | const Chunk& chunk, |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 436 | const BlockSparseMatrix* A, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 437 | const double* b, |
| 438 | int row_block_counter, |
| 439 | typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* ete, |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 440 | double* g, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 441 | double* buffer, |
| 442 | BlockRandomAccessMatrix* lhs) { |
| 443 | const CompressedRowBlockStructure* bs = A->block_structure(); |
| 444 | |
| 445 | int b_pos = bs->rows[row_block_counter].block.position; |
| 446 | const int e_block_size = ete->rows(); |
| 447 | |
| 448 | // Iterate over the rows in this chunk, for each row, compute the |
| 449 | // contribution of its F blocks to the Schur complement, the |
| 450 | // contribution of its E block to the matrix EE' (ete), and the |
| 451 | // corresponding block in the gradient vector. |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 452 | const double* values = A->values(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 453 | for (int j = 0; j < chunk.size; ++j) { |
| 454 | const CompressedRow& row = bs->rows[row_block_counter + j]; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 455 | |
| 456 | if (row.cells.size() > 1) { |
| 457 | EBlockRowOuterProduct(A, row_block_counter + j, lhs); |
| 458 | } |
| 459 | |
| 460 | // Extract the e_block, ETE += E_i' E_i |
| 461 | const Cell& e_cell = row.cells.front(); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 462 | MatrixTransposeMatrixMultiply |
| 463 | <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 464 | values + e_cell.position, row.block.size, e_block_size, |
| 465 | values + e_cell.position, row.block.size, e_block_size, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 466 | ete->data(), 0, 0, e_block_size, e_block_size); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 467 | |
| 468 | // g += E_i' b_i |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 469 | MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 470 | values + e_cell.position, row.block.size, e_block_size, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 471 | b + b_pos, |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 472 | g); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 473 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 474 | |
| 475 | // buffer = E'F. This computation is done by iterating over the |
| 476 | // f_blocks for each row in the chunk. |
| 477 | for (int c = 1; c < row.cells.size(); ++c) { |
| 478 | const int f_block_id = row.cells[c].block_id; |
| 479 | const int f_block_size = bs->cols[f_block_id].size; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 480 | double* buffer_ptr = |
| 481 | buffer + FindOrDie(chunk.buffer_layout, f_block_id); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 482 | MatrixTransposeMatrixMultiply |
| 483 | <kRowBlockSize, kEBlockSize, kRowBlockSize, kFBlockSize, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 484 | values + e_cell.position, row.block.size, e_block_size, |
| 485 | values + row.cells[c].position, row.block.size, f_block_size, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 486 | buffer_ptr, 0, 0, e_block_size, f_block_size); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 487 | } |
| 488 | b_pos += row.block.size; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | // Compute the outer product F'E(E'E)^{-1}E'F and subtract it from the |
| 493 | // Schur complement matrix, i.e |
| 494 | // |
| 495 | // S -= F'E(E'E)^{-1}E'F. |
| 496 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 497 | void |
| 498 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 499 | ChunkOuterProduct(const CompressedRowBlockStructure* bs, |
| 500 | const Matrix& inverse_ete, |
| 501 | const double* buffer, |
| 502 | const BufferLayoutType& buffer_layout, |
| 503 | BlockRandomAccessMatrix* lhs) { |
| 504 | // This is the most computationally expensive part of this |
| 505 | // code. Profiling experiments reveal that the bottleneck is not the |
| 506 | // computation of the right-hand matrix product, but memory |
| 507 | // references to the left hand side. |
| 508 | const int e_block_size = inverse_ete.rows(); |
| 509 | BufferLayoutType::const_iterator it1 = buffer_layout.begin(); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 510 | |
| 511 | #ifdef CERES_USE_OPENMP |
| 512 | int thread_id = omp_get_thread_num(); |
| 513 | #else |
| 514 | int thread_id = 0; |
| 515 | #endif |
| 516 | double* b1_transpose_inverse_ete = |
| 517 | chunk_outer_product_buffer_.get() + thread_id * buffer_size_; |
| 518 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 519 | // S(i,j) -= bi' * ete^{-1} b_j |
| 520 | for (; it1 != buffer_layout.end(); ++it1) { |
| 521 | const int block1 = it1->first - num_eliminate_blocks_; |
| 522 | const int block1_size = bs->cols[it1->first].size; |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 523 | MatrixTransposeMatrixMultiply |
| 524 | <kEBlockSize, kFBlockSize, kEBlockSize, kEBlockSize, 0>( |
| 525 | buffer + it1->second, e_block_size, block1_size, |
| 526 | inverse_ete.data(), e_block_size, e_block_size, |
| 527 | b1_transpose_inverse_ete, 0, 0, block1_size, e_block_size); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 528 | |
| 529 | BufferLayoutType::const_iterator it2 = it1; |
| 530 | for (; it2 != buffer_layout.end(); ++it2) { |
| 531 | const int block2 = it2->first - num_eliminate_blocks_; |
| 532 | |
| 533 | int r, c, row_stride, col_stride; |
| 534 | CellInfo* cell_info = lhs->GetCell(block1, block2, |
| 535 | &r, &c, |
| 536 | &row_stride, &col_stride); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 537 | if (cell_info != NULL) { |
| 538 | const int block2_size = bs->cols[it2->first].size; |
| 539 | CeresMutexLock l(&cell_info->m); |
| 540 | MatrixMatrixMultiply |
| 541 | <kFBlockSize, kEBlockSize, kEBlockSize, kFBlockSize, -1>( |
| 542 | b1_transpose_inverse_ete, block1_size, e_block_size, |
| 543 | buffer + it2->second, e_block_size, block2_size, |
| 544 | cell_info->values, r, c, row_stride, col_stride); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 545 | } |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 546 | } |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | // For rows with no e_blocks, the schur complement update reduces to S |
| 551 | // += F'F. This function iterates over the rows of A with no e_block, |
| 552 | // and calls NoEBlockRowOuterProduct on each row. |
| 553 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 554 | void |
| 555 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 556 | NoEBlockRowsUpdate(const BlockSparseMatrix* A, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 557 | const double* b, |
| 558 | int row_block_counter, |
| 559 | BlockRandomAccessMatrix* lhs, |
| 560 | double* rhs) { |
| 561 | const CompressedRowBlockStructure* bs = A->block_structure(); |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 562 | const double* values = A->values(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 563 | for (; row_block_counter < bs->rows.size(); ++row_block_counter) { |
| 564 | const CompressedRow& row = bs->rows[row_block_counter]; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 565 | for (int c = 0; c < row.cells.size(); ++c) { |
| 566 | const int block_id = row.cells[c].block_id; |
| 567 | const int block_size = bs->cols[block_id].size; |
| 568 | const int block = block_id - num_eliminate_blocks_; |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 569 | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 570 | values + row.cells[c].position, row.block.size, block_size, |
Sameer Agarwal | 487250e | 2013-04-05 14:20:37 -0700 | [diff] [blame] | 571 | b + row.block.position, |
| 572 | rhs + lhs_row_layout_[block]); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 573 | } |
| 574 | NoEBlockRowOuterProduct(A, row_block_counter, lhs); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | |
| 579 | // A row r of A, which has no e_blocks gets added to the Schur |
| 580 | // Complement as S += r r'. This function is responsible for computing |
| 581 | // the contribution of a single row r to the Schur complement. It is |
| 582 | // very similar in structure to EBlockRowOuterProduct except for |
| 583 | // one difference. It does not use any of the template |
| 584 | // parameters. This is because the algorithm used for detecting the |
| 585 | // static structure of the matrix A only pays attention to rows with |
| 586 | // e_blocks. This is becase rows without e_blocks are rare and |
| 587 | // typically arise from regularization terms in the original |
| 588 | // optimization problem, and have a very different structure than the |
| 589 | // rows with e_blocks. Including them in the static structure |
| 590 | // detection will lead to most template parameters being set to |
| 591 | // dynamic. Since the number of rows without e_blocks is small, the |
| 592 | // lack of templating is not an issue. |
| 593 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 594 | void |
| 595 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 596 | NoEBlockRowOuterProduct(const BlockSparseMatrix* A, |
Sameer Agarwal | 4bf3868 | 2015-08-09 15:24:45 -0700 | [diff] [blame] | 597 | int row_block_index, |
| 598 | BlockRandomAccessMatrix* lhs) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 599 | const CompressedRowBlockStructure* bs = A->block_structure(); |
| 600 | const CompressedRow& row = bs->rows[row_block_index]; |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 601 | const double* values = A->values(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 602 | for (int i = 0; i < row.cells.size(); ++i) { |
| 603 | const int block1 = row.cells[i].block_id - num_eliminate_blocks_; |
| 604 | DCHECK_GE(block1, 0); |
| 605 | |
| 606 | const int block1_size = bs->cols[row.cells[i].block_id].size; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 607 | int r, c, row_stride, col_stride; |
| 608 | CellInfo* cell_info = lhs->GetCell(block1, block1, |
| 609 | &r, &c, |
| 610 | &row_stride, &col_stride); |
| 611 | if (cell_info != NULL) { |
Keir Mierle | ff71d74 | 2012-08-10 17:05:15 -0700 | [diff] [blame] | 612 | CeresMutexLock l(&cell_info->m); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 613 | // This multiply currently ignores the fact that this is a |
| 614 | // symmetric outer product. |
| 615 | MatrixTransposeMatrixMultiply |
| 616 | <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 617 | values + row.cells[i].position, row.block.size, block1_size, |
| 618 | values + row.cells[i].position, row.block.size, block1_size, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 619 | cell_info->values, r, c, row_stride, col_stride); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 620 | } |
| 621 | |
| 622 | for (int j = i + 1; j < row.cells.size(); ++j) { |
| 623 | const int block2 = row.cells[j].block_id - num_eliminate_blocks_; |
| 624 | DCHECK_GE(block2, 0); |
| 625 | DCHECK_LT(block1, block2); |
| 626 | int r, c, row_stride, col_stride; |
| 627 | CellInfo* cell_info = lhs->GetCell(block1, block2, |
| 628 | &r, &c, |
| 629 | &row_stride, &col_stride); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 630 | if (cell_info != NULL) { |
| 631 | const int block2_size = bs->cols[row.cells[j].block_id].size; |
| 632 | CeresMutexLock l(&cell_info->m); |
| 633 | MatrixTransposeMatrixMultiply |
| 634 | <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 635 | values + row.cells[i].position, row.block.size, block1_size, |
| 636 | values + row.cells[j].position, row.block.size, block2_size, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 637 | cell_info->values, r, c, row_stride, col_stride); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 638 | } |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 639 | } |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | // For a row with an e_block, compute the contribition S += F'F. This |
| 644 | // function has the same structure as NoEBlockRowOuterProduct, except |
| 645 | // that this function uses the template parameters. |
| 646 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 647 | void |
| 648 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 649 | EBlockRowOuterProduct(const BlockSparseMatrix* A, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 650 | int row_block_index, |
| 651 | BlockRandomAccessMatrix* lhs) { |
| 652 | const CompressedRowBlockStructure* bs = A->block_structure(); |
| 653 | const CompressedRow& row = bs->rows[row_block_index]; |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 654 | const double* values = A->values(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 655 | for (int i = 1; i < row.cells.size(); ++i) { |
| 656 | const int block1 = row.cells[i].block_id - num_eliminate_blocks_; |
| 657 | DCHECK_GE(block1, 0); |
| 658 | |
| 659 | const int block1_size = bs->cols[row.cells[i].block_id].size; |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 660 | int r, c, row_stride, col_stride; |
| 661 | CellInfo* cell_info = lhs->GetCell(block1, block1, |
| 662 | &r, &c, |
| 663 | &row_stride, &col_stride); |
| 664 | if (cell_info != NULL) { |
Keir Mierle | ff71d74 | 2012-08-10 17:05:15 -0700 | [diff] [blame] | 665 | CeresMutexLock l(&cell_info->m); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 666 | // block += b1.transpose() * b1; |
| 667 | MatrixTransposeMatrixMultiply |
| 668 | <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 669 | values + row.cells[i].position, row.block.size, block1_size, |
| 670 | values + row.cells[i].position, row.block.size, block1_size, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 671 | cell_info->values, r, c, row_stride, col_stride); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 672 | } |
| 673 | |
| 674 | for (int j = i + 1; j < row.cells.size(); ++j) { |
| 675 | const int block2 = row.cells[j].block_id - num_eliminate_blocks_; |
| 676 | DCHECK_GE(block2, 0); |
| 677 | DCHECK_LT(block1, block2); |
| 678 | const int block2_size = bs->cols[row.cells[j].block_id].size; |
| 679 | int r, c, row_stride, col_stride; |
| 680 | CellInfo* cell_info = lhs->GetCell(block1, block2, |
| 681 | &r, &c, |
| 682 | &row_stride, &col_stride); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 683 | if (cell_info != NULL) { |
| 684 | // block += b1.transpose() * b2; |
Sameer Agarwal | c7e69be | 2013-04-16 09:39:16 -0700 | [diff] [blame] | 685 | CeresMutexLock l(&cell_info->m); |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 686 | MatrixTransposeMatrixMultiply |
| 687 | <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>( |
Sameer Agarwal | c1e10d9 | 2013-04-24 11:58:24 -0700 | [diff] [blame] | 688 | values + row.cells[i].position, row.block.size, block1_size, |
| 689 | values + row.cells[j].position, row.block.size, block2_size, |
Sameer Agarwal | 296fa9b | 2013-04-02 09:44:15 -0700 | [diff] [blame] | 690 | cell_info->values, r, c, row_stride, col_stride); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 691 | } |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 692 | } |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | } // namespace internal |
| 697 | } // namespace ceres |
| 698 | |
| 699 | #endif // CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_ |