blob: b13cf3fc9f61f5c5cddae3d728862101cacd2b9a [file] [log] [blame]
Sameer Agarwalb9f15a52012-08-18 13:06:19 -07001// Ceres Solver - A fast non-linear least squares minimizer
Keir Mierle7492b0d2015-03-17 22:30:16 -07002// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
Sameer Agarwalb9f15a52012-08-18 13:06:19 -07004//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/dense_normal_cholesky_solver.h"
32
33#include <cstddef>
34
Sameer Agarwale712ce12015-04-07 14:11:10 -070035#include "Eigen/Dense"
Sameer Agarwal367b65e2013-08-09 10:35:37 -070036#include "ceres/blas.h"
Sameer Agarwalb9f15a52012-08-18 13:06:19 -070037#include "ceres/dense_sparse_matrix.h"
Sameer Agarwalb9f15a52012-08-18 13:06:19 -070038#include "ceres/internal/eigen.h"
39#include "ceres/internal/scoped_ptr.h"
Sameer Agarwal367b65e2013-08-09 10:35:37 -070040#include "ceres/lapack.h"
Sameer Agarwal42a84b82013-02-01 12:22:53 -080041#include "ceres/linear_solver.h"
Sameer Agarwalb9f15a52012-08-18 13:06:19 -070042#include "ceres/types.h"
Sameer Agarwal42a84b82013-02-01 12:22:53 -080043#include "ceres/wall_time.h"
Sameer Agarwalb9f15a52012-08-18 13:06:19 -070044
45namespace ceres {
46namespace internal {
47
48DenseNormalCholeskySolver::DenseNormalCholeskySolver(
49 const LinearSolver::Options& options)
50 : options_(options) {}
51
52LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl(
53 DenseSparseMatrix* A,
54 const double* b,
55 const LinearSolver::PerSolveOptions& per_solve_options,
56 double* x) {
Sameer Agarwald61b68a2013-08-16 17:02:56 -070057 if (options_.dense_linear_algebra_library_type == EIGEN) {
58 return SolveUsingEigen(A, b, per_solve_options, x);
59 } else {
60 return SolveUsingLAPACK(A, b, per_solve_options, x);
61 }
Sameer Agarwal367b65e2013-08-09 10:35:37 -070062}
63
64LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingEigen(
65 DenseSparseMatrix* A,
66 const double* b,
67 const LinearSolver::PerSolveOptions& per_solve_options,
68 double* x) {
Sameer Agarwal42a84b82013-02-01 12:22:53 -080069 EventLogger event_logger("DenseNormalCholeskySolver::Solve");
70
Sameer Agarwalb9f15a52012-08-18 13:06:19 -070071 const int num_rows = A->num_rows();
72 const int num_cols = A->num_cols();
73
Sameer Agarwal31730ef2013-02-28 11:20:28 -080074 ConstColMajorMatrixRef Aref = A->matrix();
Sameer Agarwalb9f15a52012-08-18 13:06:19 -070075 Matrix lhs(num_cols, num_cols);
76 lhs.setZero();
77
Sameer Agarwal42a84b82013-02-01 12:22:53 -080078 event_logger.AddEvent("Setup");
Sameer Agarwal367b65e2013-08-09 10:35:37 -070079
Sameer Agarwalb9f15a52012-08-18 13:06:19 -070080 // lhs += A'A
81 //
82 // Using rankUpdate instead of GEMM, exposes the fact that its the
83 // same matrix being multiplied with itself and that the product is
84 // symmetric.
85 lhs.selfadjointView<Eigen::Upper>().rankUpdate(Aref.transpose());
86
87 // rhs = A'b
88 Vector rhs = Aref.transpose() * ConstVectorRef(b, num_rows);
89
90 if (per_solve_options.D != NULL) {
91 ConstVectorRef D(per_solve_options.D, num_cols);
92 lhs += D.array().square().matrix().asDiagonal();
93 }
Sameer Agarwal367b65e2013-08-09 10:35:37 -070094 event_logger.AddEvent("Product");
Sameer Agarwalb9f15a52012-08-18 13:06:19 -070095
Sameer Agarwalb9f15a52012-08-18 13:06:19 -070096 LinearSolver::Summary summary;
97 summary.num_iterations = 1;
Sameer Agarwale712ce12015-04-07 14:11:10 -070098 summary.termination_type = LINEAR_SOLVER_SUCCESS;
99 Eigen::LLT<Matrix, Eigen::Upper> llt =
100 lhs.selfadjointView<Eigen::Upper>().llt();
101
102 if (llt.info() != Eigen::Success) {
Sameer Agarwal33e01b92013-11-27 10:24:03 -0800103 summary.termination_type = LINEAR_SOLVER_FAILURE;
Sameer Agarwal89a592f2013-11-26 11:35:49 -0800104 summary.message = "Eigen LLT decomposition failed.";
Sameer Agarwalb16e1182013-11-25 05:47:43 -0800105 } else {
Sameer Agarwal33e01b92013-11-27 10:24:03 -0800106 summary.termination_type = LINEAR_SOLVER_SUCCESS;
Sameer Agarwal89a592f2013-11-26 11:35:49 -0800107 summary.message = "Success.";
Sameer Agarwalb16e1182013-11-25 05:47:43 -0800108 }
109
Sameer Agarwale712ce12015-04-07 14:11:10 -0700110 VectorRef(x, num_cols) = llt.solve(rhs);
Sameer Agarwal42a84b82013-02-01 12:22:53 -0800111 event_logger.AddEvent("Solve");
Sameer Agarwalb9f15a52012-08-18 13:06:19 -0700112 return summary;
113}
114
Sameer Agarwal367b65e2013-08-09 10:35:37 -0700115LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingLAPACK(
116 DenseSparseMatrix* A,
117 const double* b,
118 const LinearSolver::PerSolveOptions& per_solve_options,
119 double* x) {
120 EventLogger event_logger("DenseNormalCholeskySolver::Solve");
121
122 if (per_solve_options.D != NULL) {
123 // Temporarily append a diagonal block to the A matrix, but undo
124 // it before returning the matrix to the user.
125 A->AppendDiagonal(per_solve_options.D);
126 }
127
128 const int num_cols = A->num_cols();
129 Matrix lhs(num_cols, num_cols);
130 event_logger.AddEvent("Setup");
131
132 // lhs = A'A
133 //
134 // Note: This is a bit delicate, it assumes that the stride on this
135 // matrix is the same as the number of rows.
136 BLAS::SymmetricRankKUpdate(A->num_rows(),
137 num_cols,
138 A->values(),
139 true,
140 1.0,
141 0.0,
142 lhs.data());
143
144 if (per_solve_options.D != NULL) {
145 // Undo the modifications to the matrix A.
146 A->RemoveDiagonal();
147 }
148
149 // TODO(sameeragarwal): Replace this with a gemv call for true blasness.
150 // rhs = A'b
Sameer Agarwald61b68a2013-08-16 17:02:56 -0700151 VectorRef(x, num_cols) =
152 A->matrix().transpose() * ConstVectorRef(b, A->num_rows());
Sameer Agarwal367b65e2013-08-09 10:35:37 -0700153 event_logger.AddEvent("Product");
154
Sameer Agarwal367b65e2013-08-09 10:35:37 -0700155 LinearSolver::Summary summary;
156 summary.num_iterations = 1;
Sameer Agarwal89a592f2013-11-26 11:35:49 -0800157 summary.termination_type =
158 LAPACK::SolveInPlaceUsingCholesky(num_cols,
159 lhs.data(),
160 x,
161 &summary.message);
Sameer Agarwalb16e1182013-11-25 05:47:43 -0800162 event_logger.AddEvent("Solve");
Sameer Agarwal367b65e2013-08-09 10:35:37 -0700163 return summary;
164}
Sameer Agarwalb9f15a52012-08-18 13:06:19 -0700165} // namespace internal
166} // namespace ceres