Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
| 31 | #include "ceres/solver_impl.h" |
| 32 | |
| 33 | #include <iostream> // NOLINT |
| 34 | #include <numeric> |
| 35 | #include "ceres/evaluator.h" |
| 36 | #include "ceres/gradient_checking_cost_function.h" |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 37 | #include "ceres/iteration_callback.h" |
| 38 | #include "ceres/levenberg_marquardt_strategy.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 39 | #include "ceres/linear_solver.h" |
| 40 | #include "ceres/map_util.h" |
| 41 | #include "ceres/minimizer.h" |
| 42 | #include "ceres/parameter_block.h" |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 43 | #include "ceres/problem.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 44 | #include "ceres/problem_impl.h" |
| 45 | #include "ceres/program.h" |
| 46 | #include "ceres/residual_block.h" |
| 47 | #include "ceres/schur_ordering.h" |
| 48 | #include "ceres/stringprintf.h" |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 49 | #include "ceres/trust_region_minimizer.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 50 | |
| 51 | namespace ceres { |
| 52 | namespace internal { |
| 53 | namespace { |
| 54 | |
| 55 | void EvaluateCostAndResiduals(ProblemImpl* problem_impl, |
| 56 | double* cost, |
| 57 | vector<double>* residuals) { |
| 58 | CHECK_NOTNULL(cost); |
| 59 | Program* program = CHECK_NOTNULL(problem_impl)->mutable_program(); |
| 60 | if (residuals != NULL) { |
| 61 | residuals->resize(program->NumResiduals()); |
| 62 | program->Evaluate(cost, &(*residuals)[0]); |
| 63 | } else { |
| 64 | program->Evaluate(cost, NULL); |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | // Callback for updating the user's parameter blocks. Updates are only |
| 69 | // done if the step is successful. |
| 70 | class StateUpdatingCallback : public IterationCallback { |
| 71 | public: |
| 72 | StateUpdatingCallback(Program* program, double* parameters) |
| 73 | : program_(program), parameters_(parameters) {} |
| 74 | |
| 75 | CallbackReturnType operator()(const IterationSummary& summary) { |
| 76 | if (summary.step_is_successful) { |
| 77 | program_->StateVectorToParameterBlocks(parameters_); |
| 78 | program_->CopyParameterBlockStateToUserState(); |
| 79 | } |
| 80 | return SOLVER_CONTINUE; |
| 81 | } |
| 82 | |
| 83 | private: |
| 84 | Program* program_; |
| 85 | double* parameters_; |
| 86 | }; |
| 87 | |
| 88 | // Callback for logging the state of the minimizer to STDERR or STDOUT |
| 89 | // depending on the user's preferences and logging level. |
| 90 | class LoggingCallback : public IterationCallback { |
| 91 | public: |
| 92 | explicit LoggingCallback(bool log_to_stdout) |
| 93 | : log_to_stdout_(log_to_stdout) {} |
| 94 | |
| 95 | ~LoggingCallback() {} |
| 96 | |
| 97 | CallbackReturnType operator()(const IterationSummary& summary) { |
| 98 | const char* kReportRowFormat = |
| 99 | "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e " |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 100 | "rho:% 3.2e mu:% 3.2e li:% 3d it:% 3.2e tt:% 3.2e"; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 101 | string output = StringPrintf(kReportRowFormat, |
| 102 | summary.iteration, |
| 103 | summary.cost, |
| 104 | summary.cost_change, |
| 105 | summary.gradient_max_norm, |
| 106 | summary.step_norm, |
| 107 | summary.relative_decrease, |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 108 | summary.trust_region_radius, |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 109 | summary.linear_solver_iterations, |
| 110 | summary.iteration_time_in_seconds, |
| 111 | summary.cumulative_time_in_seconds); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 112 | if (log_to_stdout_) { |
| 113 | cout << output << endl; |
| 114 | } else { |
| 115 | VLOG(1) << output; |
| 116 | } |
| 117 | return SOLVER_CONTINUE; |
| 118 | } |
| 119 | |
| 120 | private: |
| 121 | const bool log_to_stdout_; |
| 122 | }; |
| 123 | |
| 124 | } // namespace |
| 125 | |
| 126 | void SolverImpl::Minimize(const Solver::Options& options, |
| 127 | Program* program, |
| 128 | Evaluator* evaluator, |
| 129 | LinearSolver* linear_solver, |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 130 | double* parameters, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 131 | Solver::Summary* summary) { |
| 132 | Minimizer::Options minimizer_options(options); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 133 | LoggingCallback logging_callback(options.minimizer_progress_to_stdout); |
| 134 | if (options.logging_type != SILENT) { |
Keir Mierle | f747183 | 2012-06-14 11:31:53 -0700 | [diff] [blame] | 135 | minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), |
| 136 | &logging_callback); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 137 | } |
| 138 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 139 | StateUpdatingCallback updating_callback(program, parameters); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 140 | if (options.update_state_every_iteration) { |
Keir Mierle | f747183 | 2012-06-14 11:31:53 -0700 | [diff] [blame] | 141 | // This must get pushed to the front of the callbacks so that it is run |
| 142 | // before any of the user callbacks. |
| 143 | minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), |
| 144 | &updating_callback); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 145 | } |
| 146 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 147 | minimizer_options.evaluator = evaluator; |
| 148 | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); |
| 149 | minimizer_options.jacobian = jacobian.get(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 150 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 151 | TrustRegionStrategy::Options trust_region_strategy_options; |
| 152 | trust_region_strategy_options.linear_solver = linear_solver; |
| 153 | trust_region_strategy_options.initial_radius = |
| 154 | options.initial_trust_region_radius; |
| 155 | trust_region_strategy_options.max_radius = options.max_trust_region_radius; |
| 156 | trust_region_strategy_options.lm_min_diagonal = options.lm_min_diagonal; |
| 157 | trust_region_strategy_options.lm_max_diagonal = options.lm_max_diagonal; |
| 158 | trust_region_strategy_options.trust_region_strategy_type = |
| 159 | options.trust_region_strategy_type; |
| 160 | scoped_ptr<TrustRegionStrategy> strategy( |
| 161 | TrustRegionStrategy::Create(trust_region_strategy_options)); |
| 162 | minimizer_options.trust_region_strategy = strategy.get(); |
| 163 | |
| 164 | TrustRegionMinimizer minimizer; |
| 165 | time_t minimizer_start_time = time(NULL); |
| 166 | minimizer.Minimize(minimizer_options, parameters, summary); |
| 167 | summary->minimizer_time_in_seconds = time(NULL) - minimizer_start_time; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 168 | } |
| 169 | |
| 170 | void SolverImpl::Solve(const Solver::Options& original_options, |
| 171 | Problem* problem, |
| 172 | Solver::Summary* summary) { |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 173 | time_t solver_start_time = time(NULL); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 174 | Solver::Options options(original_options); |
| 175 | |
| 176 | #ifndef CERES_USE_OPENMP |
| 177 | if (options.num_threads > 1) { |
| 178 | LOG(WARNING) |
| 179 | << "OpenMP support is not compiled into this binary; " |
| 180 | << "only options.num_threads=1 is supported. Switching" |
| 181 | << "to single threaded mode."; |
| 182 | options.num_threads = 1; |
| 183 | } |
| 184 | if (options.num_linear_solver_threads > 1) { |
| 185 | LOG(WARNING) |
| 186 | << "OpenMP support is not compiled into this binary; " |
| 187 | << "only options.num_linear_solver_threads=1 is supported. Switching" |
| 188 | << "to single threaded mode."; |
| 189 | options.num_linear_solver_threads = 1; |
| 190 | } |
| 191 | #endif |
| 192 | |
| 193 | // Reset the summary object to its default values; |
| 194 | *CHECK_NOTNULL(summary) = Solver::Summary(); |
| 195 | summary->linear_solver_type_given = options.linear_solver_type; |
| 196 | summary->num_eliminate_blocks_given = original_options.num_eliminate_blocks; |
| 197 | summary->num_threads_given = original_options.num_threads; |
| 198 | summary->num_linear_solver_threads_given = |
| 199 | original_options.num_linear_solver_threads; |
| 200 | summary->ordering_type = original_options.ordering_type; |
| 201 | |
| 202 | ProblemImpl* problem_impl = CHECK_NOTNULL(problem)->problem_impl_.get(); |
| 203 | |
| 204 | summary->num_parameter_blocks = problem_impl->NumParameterBlocks(); |
| 205 | summary->num_parameters = problem_impl->NumParameters(); |
| 206 | summary->num_residual_blocks = problem_impl->NumResidualBlocks(); |
| 207 | summary->num_residuals = problem_impl->NumResiduals(); |
| 208 | |
| 209 | summary->num_threads_used = options.num_threads; |
Sameer Agarwal | 97fb6d9 | 2012-06-17 10:08:19 -0700 | [diff] [blame] | 210 | summary->sparse_linear_algebra_library = |
| 211 | options.sparse_linear_algebra_library; |
| 212 | summary->trust_region_strategy_type = options.trust_region_strategy_type; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 213 | |
Keir Mierle | 57d91f5 | 2012-06-17 23:45:23 -0700 | [diff] [blame] | 214 | // Ensure the program state is set to the user parameters. |
| 215 | Program* program = CHECK_NOTNULL(problem_impl)->mutable_program(); |
| 216 | if (!program->CopyUserStateToParameterBlocks()) { |
| 217 | // This can only happen if there was a numerical problem updating the local |
| 218 | // jacobians. Indicate as such and fail out. |
Sameer Agarwal | 4a6cc1c | 2012-06-18 10:20:08 -0700 | [diff] [blame^] | 219 | summary->termination_type = NUMERICAL_FAILURE; |
Keir Mierle | 57d91f5 | 2012-06-17 23:45:23 -0700 | [diff] [blame] | 220 | summary->error = "Local parameterization failure."; |
| 221 | return; |
| 222 | } |
| 223 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 224 | // Evaluate the initial cost and residual vector (if needed). The |
| 225 | // initial cost needs to be computed on the original unpreprocessed |
| 226 | // problem, as it is used to determine the value of the "fixed" part |
| 227 | // of the objective function after the problem has undergone |
| 228 | // reduction. Also the initial residuals are in the order in which |
| 229 | // the user added the ResidualBlocks to the optimization problem. |
| 230 | EvaluateCostAndResiduals(problem_impl, |
| 231 | &summary->initial_cost, |
| 232 | options.return_initial_residuals |
| 233 | ? &summary->initial_residuals |
| 234 | : NULL); |
| 235 | |
| 236 | // If the user requests gradient checking, construct a new |
| 237 | // ProblemImpl by wrapping the CostFunctions of problem_impl inside |
| 238 | // GradientCheckingCostFunction and replacing problem_impl with |
| 239 | // gradient_checking_problem_impl. |
| 240 | scoped_ptr<ProblemImpl> gradient_checking_problem_impl; |
| 241 | if (options.check_gradients) { |
| 242 | VLOG(1) << "Checking Gradients"; |
| 243 | gradient_checking_problem_impl.reset( |
| 244 | CreateGradientCheckingProblemImpl( |
| 245 | problem_impl, |
| 246 | options.numeric_derivative_relative_step_size, |
| 247 | options.gradient_check_relative_precision)); |
| 248 | |
| 249 | // From here on, problem_impl will point to the GradientChecking version. |
| 250 | problem_impl = gradient_checking_problem_impl.get(); |
| 251 | } |
| 252 | |
| 253 | // Create the three objects needed to minimize: the transformed program, the |
| 254 | // evaluator, and the linear solver. |
| 255 | |
| 256 | scoped_ptr<Program> reduced_program( |
| 257 | CreateReducedProgram(&options, problem_impl, &summary->error)); |
| 258 | if (reduced_program == NULL) { |
| 259 | return; |
| 260 | } |
| 261 | |
| 262 | summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks(); |
| 263 | summary->num_parameters_reduced = reduced_program->NumParameters(); |
| 264 | summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks(); |
| 265 | summary->num_residuals_reduced = reduced_program->NumResiduals(); |
| 266 | |
| 267 | scoped_ptr<LinearSolver> |
| 268 | linear_solver(CreateLinearSolver(&options, &summary->error)); |
| 269 | summary->linear_solver_type_used = options.linear_solver_type; |
| 270 | summary->preconditioner_type = options.preconditioner_type; |
| 271 | summary->num_eliminate_blocks_used = options.num_eliminate_blocks; |
| 272 | summary->num_linear_solver_threads_used = options.num_linear_solver_threads; |
| 273 | |
| 274 | if (linear_solver == NULL) { |
| 275 | return; |
| 276 | } |
| 277 | |
| 278 | if (!MaybeReorderResidualBlocks(options, |
| 279 | reduced_program.get(), |
| 280 | &summary->error)) { |
| 281 | return; |
| 282 | } |
| 283 | |
| 284 | scoped_ptr<Evaluator> evaluator( |
| 285 | CreateEvaluator(options, reduced_program.get(), &summary->error)); |
| 286 | if (evaluator == NULL) { |
| 287 | return; |
| 288 | } |
| 289 | |
| 290 | // The optimizer works on contiguous parameter vectors; allocate some. |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 291 | Vector parameters(reduced_program->NumParameters()); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 292 | |
| 293 | // Collect the discontiguous parameters into a contiguous state vector. |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 294 | reduced_program->ParameterBlocksToStateVector(parameters.data()); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 295 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 296 | time_t minimizer_start_time = time(NULL); |
| 297 | summary->preprocessor_time_in_seconds = |
| 298 | minimizer_start_time - solver_start_time; |
| 299 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 300 | // Run the optimization. |
| 301 | Minimize(options, |
| 302 | reduced_program.get(), |
| 303 | evaluator.get(), |
| 304 | linear_solver.get(), |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 305 | parameters.data(), |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 306 | summary); |
| 307 | |
| 308 | // If the user aborted mid-optimization or the optimization |
| 309 | // terminated because of a numerical failure, then return without |
| 310 | // updating user state. |
| 311 | if (summary->termination_type == USER_ABORT || |
| 312 | summary->termination_type == NUMERICAL_FAILURE) { |
| 313 | return; |
| 314 | } |
| 315 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 316 | time_t post_process_start_time = time(NULL); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 317 | // Push the contiguous optimized parameters back to the user's parameters. |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 318 | reduced_program->StateVectorToParameterBlocks(parameters.data()); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 319 | reduced_program->CopyParameterBlockStateToUserState(); |
| 320 | |
| 321 | // Return the final cost and residuals for the original problem. |
| 322 | EvaluateCostAndResiduals(problem->problem_impl_.get(), |
| 323 | &summary->final_cost, |
| 324 | options.return_final_residuals |
| 325 | ? &summary->final_residuals |
| 326 | : NULL); |
| 327 | |
| 328 | // Stick a fork in it, we're done. |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 329 | time_t post_process_end_time = time(NULL); |
| 330 | summary->postprocessor_time_in_seconds = |
| 331 | post_process_end_time - post_process_start_time; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 332 | } |
| 333 | |
| 334 | // Strips varying parameters and residuals, maintaining order, and updating |
| 335 | // num_eliminate_blocks. |
| 336 | bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program, |
| 337 | int* num_eliminate_blocks, |
| 338 | string* error) { |
| 339 | int original_num_eliminate_blocks = *num_eliminate_blocks; |
| 340 | vector<ParameterBlock*>* parameter_blocks = |
| 341 | program->mutable_parameter_blocks(); |
| 342 | |
| 343 | // Mark all the parameters as unused. Abuse the index member of the parameter |
| 344 | // blocks for the marking. |
| 345 | for (int i = 0; i < parameter_blocks->size(); ++i) { |
| 346 | (*parameter_blocks)[i]->set_index(-1); |
| 347 | } |
| 348 | |
| 349 | // Filter out residual that have all-constant parameters, and mark all the |
| 350 | // parameter blocks that appear in residuals. |
| 351 | { |
| 352 | vector<ResidualBlock*>* residual_blocks = |
| 353 | program->mutable_residual_blocks(); |
| 354 | int j = 0; |
| 355 | for (int i = 0; i < residual_blocks->size(); ++i) { |
| 356 | ResidualBlock* residual_block = (*residual_blocks)[i]; |
| 357 | int num_parameter_blocks = residual_block->NumParameterBlocks(); |
| 358 | |
| 359 | // Determine if the residual block is fixed, and also mark varying |
| 360 | // parameters that appear in the residual block. |
| 361 | bool all_constant = true; |
| 362 | for (int k = 0; k < num_parameter_blocks; k++) { |
| 363 | ParameterBlock* parameter_block = residual_block->parameter_blocks()[k]; |
| 364 | if (!parameter_block->IsConstant()) { |
| 365 | all_constant = false; |
| 366 | parameter_block->set_index(1); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | if (!all_constant) { |
| 371 | (*residual_blocks)[j++] = (*residual_blocks)[i]; |
| 372 | } |
| 373 | } |
| 374 | residual_blocks->resize(j); |
| 375 | } |
| 376 | |
| 377 | // Filter out unused or fixed parameter blocks, and update |
| 378 | // num_eliminate_blocks as necessary. |
| 379 | { |
| 380 | vector<ParameterBlock*>* parameter_blocks = |
| 381 | program->mutable_parameter_blocks(); |
| 382 | int j = 0; |
| 383 | for (int i = 0; i < parameter_blocks->size(); ++i) { |
| 384 | ParameterBlock* parameter_block = (*parameter_blocks)[i]; |
| 385 | if (parameter_block->index() == 1) { |
| 386 | (*parameter_blocks)[j++] = parameter_block; |
| 387 | } else if (i < original_num_eliminate_blocks) { |
| 388 | (*num_eliminate_blocks)--; |
| 389 | } |
| 390 | } |
| 391 | parameter_blocks->resize(j); |
| 392 | } |
| 393 | |
| 394 | CHECK(((program->NumResidualBlocks() == 0) && |
| 395 | (program->NumParameterBlocks() == 0)) || |
| 396 | ((program->NumResidualBlocks() != 0) && |
| 397 | (program->NumParameterBlocks() != 0))) |
| 398 | << "Congratulations, you found a bug in Ceres. Please report it."; |
| 399 | return true; |
| 400 | } |
| 401 | |
| 402 | Program* SolverImpl::CreateReducedProgram(Solver::Options* options, |
| 403 | ProblemImpl* problem_impl, |
| 404 | string* error) { |
| 405 | Program* original_program = problem_impl->mutable_program(); |
| 406 | scoped_ptr<Program> transformed_program(new Program(*original_program)); |
| 407 | |
| 408 | if (options->ordering_type == USER && |
| 409 | !ApplyUserOrdering(*problem_impl, |
| 410 | options->ordering, |
| 411 | transformed_program.get(), |
| 412 | error)) { |
| 413 | return NULL; |
| 414 | } |
| 415 | |
| 416 | if (options->ordering_type == SCHUR && options->num_eliminate_blocks != 0) { |
| 417 | *error = "Can't specify SCHUR ordering and num_eliminate_blocks " |
| 418 | "at the same time; SCHUR ordering determines " |
| 419 | "num_eliminate_blocks automatically."; |
| 420 | return NULL; |
| 421 | } |
| 422 | |
| 423 | if (options->ordering_type == SCHUR && options->ordering.size() != 0) { |
| 424 | *error = "Can't specify SCHUR ordering type and the ordering " |
| 425 | "vector at the same time; SCHUR ordering determines " |
| 426 | "a suitable parameter ordering automatically."; |
| 427 | return NULL; |
| 428 | } |
| 429 | |
| 430 | int num_eliminate_blocks = options->num_eliminate_blocks; |
| 431 | |
| 432 | if (!RemoveFixedBlocksFromProgram(transformed_program.get(), |
| 433 | &num_eliminate_blocks, |
| 434 | error)) { |
| 435 | return NULL; |
| 436 | } |
| 437 | |
| 438 | if (transformed_program->NumParameterBlocks() == 0) { |
| 439 | LOG(WARNING) << "No varying parameter blocks to optimize; " |
| 440 | << "bailing early."; |
| 441 | return transformed_program.release(); |
| 442 | } |
| 443 | |
| 444 | if (options->ordering_type == SCHUR) { |
| 445 | vector<ParameterBlock*> schur_ordering; |
| 446 | num_eliminate_blocks = ComputeSchurOrdering(*transformed_program, |
| 447 | &schur_ordering); |
| 448 | CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks()) |
| 449 | << "Congratulations, you found a Ceres bug! Please report this error " |
| 450 | << "to the developers."; |
| 451 | |
| 452 | // Replace the transformed program's ordering with the schur ordering. |
| 453 | swap(*transformed_program->mutable_parameter_blocks(), schur_ordering); |
| 454 | } |
| 455 | options->num_eliminate_blocks = num_eliminate_blocks; |
| 456 | CHECK_GE(options->num_eliminate_blocks, 0) |
| 457 | << "Congratulations, you found a Ceres bug! Please report this error " |
| 458 | << "to the developers."; |
| 459 | |
| 460 | // Since the transformed program is the "active" program, and it is mutated, |
| 461 | // update the parameter offsets and indices. |
| 462 | transformed_program->SetParameterOffsetsAndIndex(); |
| 463 | return transformed_program.release(); |
| 464 | } |
| 465 | |
| 466 | LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options, |
| 467 | string* error) { |
Sameer Agarwal | 5ecd251 | 2012-06-17 16:34:03 -0700 | [diff] [blame] | 468 | if (options->trust_region_strategy_type == DOGLEG) { |
| 469 | if (options->linear_solver_type == ITERATIVE_SCHUR || |
| 470 | options->linear_solver_type == CGNR) { |
| 471 | *error = "DOGLEG only supports exact factorization based linear " |
| 472 | "solvers. If you want to use an iterative solver please " |
| 473 | "use LEVENBERG_MARQUARDT as the trust_region_strategy_type"; |
| 474 | return NULL; |
| 475 | } |
| 476 | } |
| 477 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 478 | #ifdef CERES_NO_SUITESPARSE |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 479 | if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && |
| 480 | options->sparse_linear_algebra_library == SUITE_SPARSE) { |
| 481 | *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITESPARSE because " |
| 482 | "SuiteSparse was not enabled when Ceres was built."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 483 | return NULL; |
| 484 | } |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 485 | #endif |
| 486 | |
| 487 | #ifdef CERES_NO_CXSPARSE |
| 488 | if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && |
| 489 | options->sparse_linear_algebra_library == CX_SPARSE) { |
| 490 | *error = "Can't use SPARSE_NORMAL_CHOLESKY with CXSPARSE because " |
| 491 | "CXSparse was not enabled when Ceres was built."; |
| 492 | return NULL; |
| 493 | } |
| 494 | #endif |
| 495 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 496 | |
| 497 | if (options->linear_solver_max_num_iterations <= 0) { |
| 498 | *error = "Solver::Options::linear_solver_max_num_iterations is 0."; |
| 499 | return NULL; |
| 500 | } |
| 501 | if (options->linear_solver_min_num_iterations <= 0) { |
| 502 | *error = "Solver::Options::linear_solver_min_num_iterations is 0."; |
| 503 | return NULL; |
| 504 | } |
| 505 | if (options->linear_solver_min_num_iterations > |
| 506 | options->linear_solver_max_num_iterations) { |
| 507 | *error = "Solver::Options::linear_solver_min_num_iterations > " |
| 508 | "Solver::Options::linear_solver_max_num_iterations."; |
| 509 | return NULL; |
| 510 | } |
| 511 | |
| 512 | LinearSolver::Options linear_solver_options; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 513 | linear_solver_options.min_num_iterations = |
| 514 | options->linear_solver_min_num_iterations; |
| 515 | linear_solver_options.max_num_iterations = |
| 516 | options->linear_solver_max_num_iterations; |
| 517 | linear_solver_options.type = options->linear_solver_type; |
| 518 | linear_solver_options.preconditioner_type = options->preconditioner_type; |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 519 | linear_solver_options.sparse_linear_algebra_library = |
| 520 | options->sparse_linear_algebra_library; |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 521 | linear_solver_options.use_block_amd = options->use_block_amd; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 522 | |
| 523 | #ifdef CERES_NO_SUITESPARSE |
| 524 | if (linear_solver_options.preconditioner_type == SCHUR_JACOBI) { |
| 525 | *error = "SCHUR_JACOBI preconditioner not suppored. Please build Ceres " |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 526 | "with SuiteSparse support."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 527 | return NULL; |
| 528 | } |
| 529 | |
| 530 | if (linear_solver_options.preconditioner_type == CLUSTER_JACOBI) { |
| 531 | *error = "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres " |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 532 | "with SuiteSparse support."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 533 | return NULL; |
| 534 | } |
| 535 | |
| 536 | if (linear_solver_options.preconditioner_type == CLUSTER_TRIDIAGONAL) { |
| 537 | *error = "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build " |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 538 | "Ceres with SuiteSparse support."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 539 | return NULL; |
| 540 | } |
| 541 | #endif |
| 542 | |
| 543 | linear_solver_options.num_threads = options->num_linear_solver_threads; |
| 544 | linear_solver_options.num_eliminate_blocks = |
| 545 | options->num_eliminate_blocks; |
| 546 | |
| 547 | if ((linear_solver_options.num_eliminate_blocks == 0) && |
| 548 | IsSchurType(linear_solver_options.type)) { |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 549 | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) |
| 550 | LOG(INFO) << "No elimination block remaining switching to DENSE_QR."; |
| 551 | linear_solver_options.type = DENSE_QR; |
| 552 | #else |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 553 | LOG(INFO) << "No elimination block remaining " |
| 554 | << "switching to SPARSE_NORMAL_CHOLESKY."; |
| 555 | linear_solver_options.type = SPARSE_NORMAL_CHOLESKY; |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 556 | #endif |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 557 | } |
| 558 | |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 559 | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 560 | if (linear_solver_options.type == SPARSE_SCHUR) { |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 561 | *error = "Can't use SPARSE_SCHUR because neither SuiteSparse nor" |
| 562 | "CXSparse was enabled when Ceres was compiled."; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 563 | return NULL; |
| 564 | } |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 565 | #endif |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 566 | |
| 567 | // The matrix used for storing the dense Schur complement has a |
| 568 | // single lock guarding the whole matrix. Running the |
| 569 | // SchurComplementSolver with multiple threads leads to maximum |
| 570 | // contention and slowdown. If the problem is large enough to |
| 571 | // benefit from a multithreaded schur eliminator, you should be |
| 572 | // using a SPARSE_SCHUR solver anyways. |
| 573 | if ((linear_solver_options.num_threads > 1) && |
| 574 | (linear_solver_options.type == DENSE_SCHUR)) { |
| 575 | LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = " |
| 576 | << options->num_linear_solver_threads |
| 577 | << " with DENSE_SCHUR will result in poor performance; " |
| 578 | << "switching to single-threaded."; |
| 579 | linear_solver_options.num_threads = 1; |
| 580 | } |
| 581 | |
| 582 | options->linear_solver_type = linear_solver_options.type; |
| 583 | options->num_linear_solver_threads = linear_solver_options.num_threads; |
| 584 | |
| 585 | return LinearSolver::Create(linear_solver_options); |
| 586 | } |
| 587 | |
| 588 | bool SolverImpl::ApplyUserOrdering(const ProblemImpl& problem_impl, |
| 589 | vector<double*>& ordering, |
| 590 | Program* program, |
| 591 | string* error) { |
| 592 | if (ordering.size() != program->NumParameterBlocks()) { |
| 593 | *error = StringPrintf("User specified ordering does not have the same " |
| 594 | "number of parameters as the problem. The problem" |
| 595 | "has %d blocks while the ordering has %ld blocks.", |
| 596 | program->NumParameterBlocks(), |
| 597 | ordering.size()); |
| 598 | return false; |
| 599 | } |
| 600 | |
| 601 | // Ensure that there are no duplicates in the user's ordering. |
| 602 | { |
| 603 | vector<double*> ordering_copy(ordering); |
| 604 | sort(ordering_copy.begin(), ordering_copy.end()); |
| 605 | if (unique(ordering_copy.begin(), ordering_copy.end()) |
| 606 | != ordering_copy.end()) { |
| 607 | *error = "User specified ordering contains duplicates."; |
| 608 | return false; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | vector<ParameterBlock*>* parameter_blocks = |
| 613 | program->mutable_parameter_blocks(); |
| 614 | |
| 615 | fill(parameter_blocks->begin(), |
| 616 | parameter_blocks->end(), |
| 617 | static_cast<ParameterBlock*>(NULL)); |
| 618 | |
| 619 | const ProblemImpl::ParameterMap& parameter_map = problem_impl.parameter_map(); |
| 620 | for (int i = 0; i < ordering.size(); ++i) { |
| 621 | ProblemImpl::ParameterMap::const_iterator it = |
| 622 | parameter_map.find(ordering[i]); |
| 623 | if (it == parameter_map.end()) { |
| 624 | *error = StringPrintf("User specified ordering contains a pointer " |
| 625 | "to a double that is not a parameter block in the " |
| 626 | "problem. The invalid double is at position %d " |
| 627 | " in options.ordering.", i); |
| 628 | return false; |
| 629 | } |
| 630 | (*parameter_blocks)[i] = it->second; |
| 631 | } |
| 632 | return true; |
| 633 | } |
| 634 | |
| 635 | // Find the minimum index of any parameter block to the given residual. |
| 636 | // Parameter blocks that have indices greater than num_eliminate_blocks are |
| 637 | // considered to have an index equal to num_eliminate_blocks. |
| 638 | int MinParameterBlock(const ResidualBlock* residual_block, |
| 639 | int num_eliminate_blocks) { |
| 640 | int min_parameter_block_position = num_eliminate_blocks; |
| 641 | for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) { |
| 642 | ParameterBlock* parameter_block = residual_block->parameter_blocks()[i]; |
Keir Mierle | 32de18d | 2012-05-13 16:45:05 -0700 | [diff] [blame] | 643 | if (!parameter_block->IsConstant()) { |
| 644 | CHECK_NE(parameter_block->index(), -1) |
| 645 | << "Did you forget to call Program::SetParameterOffsetsAndIndex()? " |
| 646 | << "This is a Ceres bug; please contact the developers!"; |
| 647 | min_parameter_block_position = std::min(parameter_block->index(), |
| 648 | min_parameter_block_position); |
| 649 | } |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 650 | } |
| 651 | return min_parameter_block_position; |
| 652 | } |
| 653 | |
| 654 | // Reorder the residuals for program, if necessary, so that the residuals |
| 655 | // involving each E block occur together. This is a necessary condition for the |
| 656 | // Schur eliminator, which works on these "row blocks" in the jacobian. |
| 657 | bool SolverImpl::MaybeReorderResidualBlocks(const Solver::Options& options, |
| 658 | Program* program, |
| 659 | string* error) { |
| 660 | // Only Schur types require the lexicographic reordering. |
| 661 | if (!IsSchurType(options.linear_solver_type)) { |
| 662 | return true; |
| 663 | } |
| 664 | |
| 665 | CHECK_NE(0, options.num_eliminate_blocks) |
| 666 | << "Congratulations, you found a Ceres bug! Please report this error " |
| 667 | << "to the developers."; |
| 668 | |
| 669 | // Create a histogram of the number of residuals for each E block. There is an |
| 670 | // extra bucket at the end to catch all non-eliminated F blocks. |
| 671 | vector<int> residual_blocks_per_e_block(options.num_eliminate_blocks + 1); |
| 672 | vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks(); |
| 673 | vector<int> min_position_per_residual(residual_blocks->size()); |
| 674 | for (int i = 0; i < residual_blocks->size(); ++i) { |
| 675 | ResidualBlock* residual_block = (*residual_blocks)[i]; |
| 676 | int position = MinParameterBlock(residual_block, |
| 677 | options.num_eliminate_blocks); |
| 678 | min_position_per_residual[i] = position; |
| 679 | DCHECK_LE(position, options.num_eliminate_blocks); |
| 680 | residual_blocks_per_e_block[position]++; |
| 681 | } |
| 682 | |
| 683 | // Run a cumulative sum on the histogram, to obtain offsets to the start of |
| 684 | // each histogram bucket (where each bucket is for the residuals for that |
| 685 | // E-block). |
| 686 | vector<int> offsets(options.num_eliminate_blocks + 1); |
| 687 | std::partial_sum(residual_blocks_per_e_block.begin(), |
| 688 | residual_blocks_per_e_block.end(), |
| 689 | offsets.begin()); |
| 690 | CHECK_EQ(offsets.back(), residual_blocks->size()) |
| 691 | << "Congratulations, you found a Ceres bug! Please report this error " |
| 692 | << "to the developers."; |
| 693 | |
| 694 | CHECK(find(residual_blocks_per_e_block.begin(), |
| 695 | residual_blocks_per_e_block.end() - 1, 0) != |
| 696 | residual_blocks_per_e_block.end()) |
| 697 | << "Congratulations, you found a Ceres bug! Please report this error " |
| 698 | << "to the developers."; |
| 699 | |
| 700 | // Fill in each bucket with the residual blocks for its corresponding E block. |
| 701 | // Each bucket is individually filled from the back of the bucket to the front |
| 702 | // of the bucket. The filling order among the buckets is dictated by the |
| 703 | // residual blocks. This loop uses the offsets as counters; subtracting one |
| 704 | // from each offset as a residual block is placed in the bucket. When the |
| 705 | // filling is finished, the offset pointerts should have shifted down one |
| 706 | // entry (this is verified below). |
| 707 | vector<ResidualBlock*> reordered_residual_blocks( |
| 708 | (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL)); |
| 709 | for (int i = 0; i < residual_blocks->size(); ++i) { |
| 710 | int bucket = min_position_per_residual[i]; |
| 711 | |
| 712 | // Decrement the cursor, which should now point at the next empty position. |
| 713 | offsets[bucket]--; |
| 714 | |
| 715 | // Sanity. |
| 716 | CHECK(reordered_residual_blocks[offsets[bucket]] == NULL) |
| 717 | << "Congratulations, you found a Ceres bug! Please report this error " |
| 718 | << "to the developers."; |
| 719 | |
| 720 | reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i]; |
| 721 | } |
| 722 | |
| 723 | // Sanity check #1: The difference in bucket offsets should match the |
| 724 | // histogram sizes. |
| 725 | for (int i = 0; i < options.num_eliminate_blocks; ++i) { |
| 726 | CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i]) |
| 727 | << "Congratulations, you found a Ceres bug! Please report this error " |
| 728 | << "to the developers."; |
| 729 | } |
| 730 | // Sanity check #2: No NULL's left behind. |
| 731 | for (int i = 0; i < reordered_residual_blocks.size(); ++i) { |
| 732 | CHECK(reordered_residual_blocks[i] != NULL) |
| 733 | << "Congratulations, you found a Ceres bug! Please report this error " |
| 734 | << "to the developers."; |
| 735 | } |
| 736 | |
| 737 | // Now that the residuals are collected by E block, swap them in place. |
| 738 | swap(*program->mutable_residual_blocks(), reordered_residual_blocks); |
| 739 | return true; |
| 740 | } |
| 741 | |
| 742 | Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options, |
| 743 | Program* program, |
| 744 | string* error) { |
| 745 | Evaluator::Options evaluator_options; |
| 746 | evaluator_options.linear_solver_type = options.linear_solver_type; |
| 747 | evaluator_options.num_eliminate_blocks = options.num_eliminate_blocks; |
| 748 | evaluator_options.num_threads = options.num_threads; |
| 749 | return Evaluator::Create(evaluator_options, program, error); |
| 750 | } |
| 751 | |
| 752 | } // namespace internal |
| 753 | } // namespace ceres |