Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2013 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/covariance.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cmath> |
| 35 | #include "ceres/compressed_row_sparse_matrix.h" |
| 36 | #include "ceres/cost_function.h" |
| 37 | #include "ceres/covariance_impl.h" |
| 38 | #include "ceres/local_parameterization.h" |
| 39 | #include "ceres/map_util.h" |
| 40 | #include "ceres/problem_impl.h" |
| 41 | #include "gtest/gtest.h" |
| 42 | |
| 43 | namespace ceres { |
| 44 | namespace internal { |
| 45 | |
| 46 | TEST(CovarianceImpl, ComputeCovarianceSparsity) { |
| 47 | double parameters[10]; |
| 48 | |
| 49 | double* block1 = parameters; |
| 50 | double* block2 = block1 + 1; |
| 51 | double* block3 = block2 + 2; |
| 52 | double* block4 = block3 + 3; |
| 53 | |
| 54 | ProblemImpl problem; |
| 55 | |
| 56 | // Add in random order |
| 57 | problem.AddParameterBlock(block1, 1); |
| 58 | problem.AddParameterBlock(block4, 4); |
| 59 | problem.AddParameterBlock(block3, 3); |
| 60 | problem.AddParameterBlock(block2, 2); |
| 61 | |
| 62 | // Sparsity pattern |
| 63 | // |
| 64 | // x 0 0 0 0 0 x x x x |
| 65 | // 0 x x x x x 0 0 0 0 |
| 66 | // 0 x x x x x 0 0 0 0 |
| 67 | // 0 0 0 x x x 0 0 0 0 |
| 68 | // 0 0 0 x x x 0 0 0 0 |
| 69 | // 0 0 0 x x x 0 0 0 0 |
| 70 | // 0 0 0 0 0 0 x x x x |
| 71 | // 0 0 0 0 0 0 x x x x |
| 72 | // 0 0 0 0 0 0 x x x x |
| 73 | // 0 0 0 0 0 0 x x x x |
| 74 | |
| 75 | int expected_rows[] = {0, 5, 10, 15, 18, 21, 24, 28, 32, 36, 40}; |
| 76 | int expected_cols[] = {0, 6, 7, 8, 9, |
| 77 | 1, 2, 3, 4, 5, |
| 78 | 1, 2, 3, 4, 5, |
| 79 | 3, 4, 5, |
| 80 | 3, 4, 5, |
| 81 | 3, 4, 5, |
| 82 | 6, 7, 8, 9, |
| 83 | 6, 7, 8, 9, |
| 84 | 6, 7, 8, 9, |
| 85 | 6, 7, 8, 9}; |
| 86 | |
| 87 | |
| 88 | vector<pair<const double*, const double*> > covariance_blocks; |
| 89 | covariance_blocks.push_back(make_pair(block1, block1)); |
| 90 | covariance_blocks.push_back(make_pair(block4, block4)); |
| 91 | covariance_blocks.push_back(make_pair(block2, block2)); |
| 92 | covariance_blocks.push_back(make_pair(block3, block3)); |
| 93 | covariance_blocks.push_back(make_pair(block2, block3)); |
| 94 | covariance_blocks.push_back(make_pair(block4, block1)); // reversed |
| 95 | |
| 96 | Covariance::Options options; |
| 97 | CovarianceImpl covariance_impl(options); |
| 98 | EXPECT_TRUE(covariance_impl |
| 99 | .ComputeCovarianceSparsity(covariance_blocks, &problem)); |
| 100 | |
| 101 | const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix(); |
| 102 | |
| 103 | EXPECT_EQ(crsm->num_rows(), 10); |
| 104 | EXPECT_EQ(crsm->num_cols(), 10); |
| 105 | EXPECT_EQ(crsm->num_nonzeros(), 40); |
| 106 | |
| 107 | const int* rows = crsm->rows(); |
| 108 | for (int r = 0; r < crsm->num_rows() + 1; ++r) { |
| 109 | EXPECT_EQ(rows[r], expected_rows[r]) |
| 110 | << r << " " |
| 111 | << rows[r] << " " |
| 112 | << expected_rows[r]; |
| 113 | } |
| 114 | |
| 115 | const int* cols = crsm->cols(); |
| 116 | for (int c = 0; c < crsm->num_nonzeros(); ++c) { |
| 117 | EXPECT_EQ(cols[c], expected_cols[c]) |
| 118 | << c << " " |
| 119 | << cols[c] << " " |
| 120 | << expected_cols[c]; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | |
| 125 | class UnaryCostFunction: public CostFunction { |
| 126 | public: |
| 127 | UnaryCostFunction(const int num_residuals, |
Sameer Agarwal | 85561ee | 2014-01-07 22:22:14 -0800 | [diff] [blame] | 128 | const int32 parameter_block_size, |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 129 | const double* jacobian) |
| 130 | : jacobian_(jacobian, jacobian + num_residuals * parameter_block_size) { |
| 131 | set_num_residuals(num_residuals); |
| 132 | mutable_parameter_block_sizes()->push_back(parameter_block_size); |
| 133 | } |
| 134 | |
| 135 | virtual bool Evaluate(double const* const* parameters, |
| 136 | double* residuals, |
| 137 | double** jacobians) const { |
| 138 | for (int i = 0; i < num_residuals(); ++i) { |
| 139 | residuals[i] = 1; |
| 140 | } |
| 141 | |
| 142 | if (jacobians == NULL) { |
| 143 | return true; |
| 144 | } |
| 145 | |
| 146 | if (jacobians[0] != NULL) { |
| 147 | copy(jacobian_.begin(), jacobian_.end(), jacobians[0]); |
| 148 | } |
| 149 | |
| 150 | return true; |
| 151 | } |
| 152 | |
| 153 | private: |
| 154 | vector<double> jacobian_; |
| 155 | }; |
| 156 | |
| 157 | |
| 158 | class BinaryCostFunction: public CostFunction { |
| 159 | public: |
| 160 | BinaryCostFunction(const int num_residuals, |
Sameer Agarwal | 85561ee | 2014-01-07 22:22:14 -0800 | [diff] [blame] | 161 | const int32 parameter_block1_size, |
| 162 | const int32 parameter_block2_size, |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 163 | const double* jacobian1, |
| 164 | const double* jacobian2) |
| 165 | : jacobian1_(jacobian1, |
| 166 | jacobian1 + num_residuals * parameter_block1_size), |
| 167 | jacobian2_(jacobian2, |
| 168 | jacobian2 + num_residuals * parameter_block2_size) { |
| 169 | set_num_residuals(num_residuals); |
| 170 | mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| 171 | mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| 172 | } |
| 173 | |
| 174 | virtual bool Evaluate(double const* const* parameters, |
| 175 | double* residuals, |
| 176 | double** jacobians) const { |
| 177 | for (int i = 0; i < num_residuals(); ++i) { |
| 178 | residuals[i] = 2; |
| 179 | } |
| 180 | |
| 181 | if (jacobians == NULL) { |
| 182 | return true; |
| 183 | } |
| 184 | |
| 185 | if (jacobians[0] != NULL) { |
| 186 | copy(jacobian1_.begin(), jacobian1_.end(), jacobians[0]); |
| 187 | } |
| 188 | |
| 189 | if (jacobians[1] != NULL) { |
| 190 | copy(jacobian2_.begin(), jacobian2_.end(), jacobians[1]); |
| 191 | } |
| 192 | |
| 193 | return true; |
| 194 | } |
| 195 | |
| 196 | private: |
| 197 | vector<double> jacobian1_; |
| 198 | vector<double> jacobian2_; |
| 199 | }; |
| 200 | |
| 201 | // x_plus_delta = delta * x; |
| 202 | class PolynomialParameterization : public LocalParameterization { |
| 203 | public: |
| 204 | virtual ~PolynomialParameterization() {} |
| 205 | |
| 206 | virtual bool Plus(const double* x, |
| 207 | const double* delta, |
| 208 | double* x_plus_delta) const { |
| 209 | x_plus_delta[0] = delta[0] * x[0]; |
| 210 | x_plus_delta[1] = delta[0] * x[1]; |
| 211 | return true; |
| 212 | } |
| 213 | |
| 214 | virtual bool ComputeJacobian(const double* x, double* jacobian) const { |
| 215 | jacobian[0] = x[0]; |
| 216 | jacobian[1] = x[1]; |
| 217 | return true; |
| 218 | } |
| 219 | |
| 220 | virtual int GlobalSize() const { return 2; } |
| 221 | virtual int LocalSize() const { return 1; } |
| 222 | }; |
| 223 | |
| 224 | class CovarianceTest : public ::testing::Test { |
| 225 | protected: |
| 226 | virtual void SetUp() { |
| 227 | double* x = parameters_; |
| 228 | double* y = x + 2; |
| 229 | double* z = y + 3; |
| 230 | |
| 231 | x[0] = 1; |
| 232 | x[1] = 1; |
| 233 | y[0] = 2; |
| 234 | y[1] = 2; |
| 235 | y[2] = 2; |
| 236 | z[0] = 3; |
| 237 | |
| 238 | { |
| 239 | double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; |
| 240 | problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x); |
| 241 | } |
| 242 | |
| 243 | { |
| 244 | double jacobian[] = { 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0 }; |
| 245 | problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y); |
| 246 | } |
| 247 | |
| 248 | { |
| 249 | double jacobian = 5.0; |
| 250 | problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), NULL, z); |
| 251 | } |
| 252 | |
| 253 | { |
| 254 | double jacobian1[] = { 1.0, 2.0, 3.0 }; |
| 255 | double jacobian2[] = { -5.0, -6.0 }; |
| 256 | problem_.AddResidualBlock( |
| 257 | new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2), |
| 258 | NULL, |
| 259 | y, |
| 260 | x); |
| 261 | } |
| 262 | |
| 263 | { |
| 264 | double jacobian1[] = {2.0 }; |
| 265 | double jacobian2[] = { 3.0, -2.0 }; |
| 266 | problem_.AddResidualBlock( |
| 267 | new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2), |
| 268 | NULL, |
| 269 | z, |
| 270 | x); |
| 271 | } |
| 272 | |
| 273 | all_covariance_blocks_.push_back(make_pair(x, x)); |
| 274 | all_covariance_blocks_.push_back(make_pair(y, y)); |
| 275 | all_covariance_blocks_.push_back(make_pair(z, z)); |
| 276 | all_covariance_blocks_.push_back(make_pair(x, y)); |
| 277 | all_covariance_blocks_.push_back(make_pair(x, z)); |
| 278 | all_covariance_blocks_.push_back(make_pair(y, z)); |
| 279 | |
| 280 | column_bounds_[x] = make_pair(0, 2); |
| 281 | column_bounds_[y] = make_pair(2, 5); |
| 282 | column_bounds_[z] = make_pair(5, 6); |
| 283 | } |
| 284 | |
| 285 | void ComputeAndCompareCovarianceBlocks(const Covariance::Options& options, |
| 286 | const double* expected_covariance) { |
| 287 | // Generate all possible combination of block pairs and check if the |
| 288 | // covariance computation is correct. |
| 289 | for (int i = 1; i <= 64; ++i) { |
| 290 | vector<pair<const double*, const double*> > covariance_blocks; |
| 291 | if (i & 1) { |
| 292 | covariance_blocks.push_back(all_covariance_blocks_[0]); |
| 293 | } |
| 294 | |
| 295 | if (i & 2) { |
| 296 | covariance_blocks.push_back(all_covariance_blocks_[1]); |
| 297 | } |
| 298 | |
| 299 | if (i & 4) { |
| 300 | covariance_blocks.push_back(all_covariance_blocks_[2]); |
| 301 | } |
| 302 | |
| 303 | if (i & 8) { |
| 304 | covariance_blocks.push_back(all_covariance_blocks_[3]); |
| 305 | } |
| 306 | |
| 307 | if (i & 16) { |
| 308 | covariance_blocks.push_back(all_covariance_blocks_[4]); |
| 309 | } |
| 310 | |
| 311 | if (i & 32) { |
| 312 | covariance_blocks.push_back(all_covariance_blocks_[5]); |
| 313 | } |
| 314 | |
| 315 | Covariance covariance(options); |
| 316 | EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_)); |
| 317 | |
| 318 | for (int i = 0; i < covariance_blocks.size(); ++i) { |
| 319 | const double* block1 = covariance_blocks[i].first; |
| 320 | const double* block2 = covariance_blocks[i].second; |
| 321 | // block1, block2 |
| 322 | GetCovarianceBlockAndCompare(block1, block2, covariance, expected_covariance); |
| 323 | // block2, block1 |
| 324 | GetCovarianceBlockAndCompare(block2, block1, covariance, expected_covariance); |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | void GetCovarianceBlockAndCompare(const double* block1, |
| 330 | const double* block2, |
| 331 | const Covariance& covariance, |
| 332 | const double* expected_covariance) { |
| 333 | const int row_begin = FindOrDie(column_bounds_, block1).first; |
| 334 | const int row_end = FindOrDie(column_bounds_, block1).second; |
| 335 | const int col_begin = FindOrDie(column_bounds_, block2).first; |
| 336 | const int col_end = FindOrDie(column_bounds_, block2).second; |
| 337 | |
| 338 | Matrix actual(row_end - row_begin, col_end - col_begin); |
| 339 | EXPECT_TRUE(covariance.GetCovarianceBlock(block1, |
| 340 | block2, |
| 341 | actual.data())); |
| 342 | |
| 343 | ConstMatrixRef expected(expected_covariance, 6, 6); |
| 344 | double diff_norm = (expected.block(row_begin, |
| 345 | col_begin, |
| 346 | row_end - row_begin, |
| 347 | col_end - col_begin) - actual).norm(); |
| 348 | diff_norm /= (row_end - row_begin) * (col_end - col_begin); |
| 349 | |
| 350 | const double kTolerance = 1e-5; |
| 351 | EXPECT_NEAR(diff_norm, 0.0, kTolerance) |
| 352 | << "rows: " << row_begin << " " << row_end << " " |
| 353 | << "cols: " << col_begin << " " << col_end << " " |
| 354 | << "\n\n expected: \n " << expected.block(row_begin, |
| 355 | col_begin, |
| 356 | row_end - row_begin, |
| 357 | col_end - col_begin) |
| 358 | << "\n\n actual: \n " << actual |
| 359 | << "\n\n full expected: \n" << expected; |
| 360 | } |
| 361 | |
| 362 | double parameters_[10]; |
| 363 | Problem problem_; |
| 364 | vector<pair<const double*, const double*> > all_covariance_blocks_; |
| 365 | map<const double*, pair<int, int> > column_bounds_; |
| 366 | }; |
| 367 | |
| 368 | |
| 369 | TEST_F(CovarianceTest, NormalBehavior) { |
| 370 | // J |
| 371 | // |
| 372 | // 1 0 0 0 0 0 |
| 373 | // 0 1 0 0 0 0 |
| 374 | // 0 0 2 0 0 0 |
| 375 | // 0 0 0 2 0 0 |
| 376 | // 0 0 0 0 2 0 |
| 377 | // 0 0 0 0 0 5 |
| 378 | // -5 -6 1 2 3 0 |
| 379 | // 3 -2 0 0 0 2 |
| 380 | |
| 381 | // J'J |
| 382 | // |
| 383 | // 35 24 -5 -10 -15 6 |
| 384 | // 24 41 -6 -12 -18 -4 |
| 385 | // -5 -6 5 2 3 0 |
| 386 | // -10 -12 2 8 6 0 |
| 387 | // -15 -18 3 6 13 0 |
| 388 | // 6 -4 0 0 0 29 |
| 389 | |
| 390 | // inv(J'J) computed using octave. |
| 391 | double expected_covariance[] = { |
| 392 | 7.0747e-02, -8.4923e-03, 1.6821e-02, 3.3643e-02, 5.0464e-02, -1.5809e-02, // NOLINT |
| 393 | -8.4923e-03, 8.1352e-02, 2.4758e-02, 4.9517e-02, 7.4275e-02, 1.2978e-02, // NOLINT |
| 394 | 1.6821e-02, 2.4758e-02, 2.4904e-01, -1.9271e-03, -2.8906e-03, -6.5325e-05, // NOLINT |
| 395 | 3.3643e-02, 4.9517e-02, -1.9271e-03, 2.4615e-01, -5.7813e-03, -1.3065e-04, // NOLINT |
| 396 | 5.0464e-02, 7.4275e-02, -2.8906e-03, -5.7813e-03, 2.4133e-01, -1.9598e-04, // NOLINT |
| 397 | -1.5809e-02, 1.2978e-02, -6.5325e-05, -1.3065e-04, -1.9598e-04, 3.9544e-02, // NOLINT |
| 398 | }; |
| 399 | |
| 400 | Covariance::Options options; |
Sameer Agarwal | 5d00bf4 | 2013-06-24 13:24:35 -0700 | [diff] [blame] | 401 | |
| 402 | #ifndef CERES_NO_SUITESPARSE |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 403 | options.algorithm_type = SPARSE_CHOLESKY; |
| 404 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 405 | |
| 406 | options.algorithm_type = SPARSE_QR; |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 407 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
Sameer Agarwal | 5d00bf4 | 2013-06-24 13:24:35 -0700 | [diff] [blame] | 408 | #endif |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 409 | |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 410 | options.algorithm_type = DENSE_SVD; |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 411 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 412 | } |
| 413 | |
Sameer Agarwal | 8f7e896 | 2013-06-03 13:07:39 -0700 | [diff] [blame] | 414 | #ifdef CERES_USE_OPENMP |
| 415 | |
| 416 | TEST_F(CovarianceTest, ThreadedNormalBehavior) { |
| 417 | // J |
| 418 | // |
| 419 | // 1 0 0 0 0 0 |
| 420 | // 0 1 0 0 0 0 |
| 421 | // 0 0 2 0 0 0 |
| 422 | // 0 0 0 2 0 0 |
| 423 | // 0 0 0 0 2 0 |
| 424 | // 0 0 0 0 0 5 |
| 425 | // -5 -6 1 2 3 0 |
| 426 | // 3 -2 0 0 0 2 |
| 427 | |
| 428 | // J'J |
| 429 | // |
| 430 | // 35 24 -5 -10 -15 6 |
| 431 | // 24 41 -6 -12 -18 -4 |
| 432 | // -5 -6 5 2 3 0 |
| 433 | // -10 -12 2 8 6 0 |
| 434 | // -15 -18 3 6 13 0 |
| 435 | // 6 -4 0 0 0 29 |
| 436 | |
| 437 | // inv(J'J) computed using octave. |
| 438 | double expected_covariance[] = { |
| 439 | 7.0747e-02, -8.4923e-03, 1.6821e-02, 3.3643e-02, 5.0464e-02, -1.5809e-02, // NOLINT |
| 440 | -8.4923e-03, 8.1352e-02, 2.4758e-02, 4.9517e-02, 7.4275e-02, 1.2978e-02, // NOLINT |
| 441 | 1.6821e-02, 2.4758e-02, 2.4904e-01, -1.9271e-03, -2.8906e-03, -6.5325e-05, // NOLINT |
| 442 | 3.3643e-02, 4.9517e-02, -1.9271e-03, 2.4615e-01, -5.7813e-03, -1.3065e-04, // NOLINT |
| 443 | 5.0464e-02, 7.4275e-02, -2.8906e-03, -5.7813e-03, 2.4133e-01, -1.9598e-04, // NOLINT |
| 444 | -1.5809e-02, 1.2978e-02, -6.5325e-05, -1.3065e-04, -1.9598e-04, 3.9544e-02, // NOLINT |
| 445 | }; |
| 446 | |
| 447 | Covariance::Options options; |
| 448 | options.num_threads = 4; |
| 449 | |
Sameer Agarwal | 5d00bf4 | 2013-06-24 13:24:35 -0700 | [diff] [blame] | 450 | #ifndef CERES_NO_SUITESPARSE |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 451 | options.algorithm_type = SPARSE_CHOLESKY; |
| 452 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 453 | |
| 454 | options.algorithm_type = SPARSE_QR; |
Sameer Agarwal | 8f7e896 | 2013-06-03 13:07:39 -0700 | [diff] [blame] | 455 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
Sameer Agarwal | 5d00bf4 | 2013-06-24 13:24:35 -0700 | [diff] [blame] | 456 | #endif |
Sameer Agarwal | 8f7e896 | 2013-06-03 13:07:39 -0700 | [diff] [blame] | 457 | |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 458 | options.algorithm_type = DENSE_SVD; |
Sameer Agarwal | 8f7e896 | 2013-06-03 13:07:39 -0700 | [diff] [blame] | 459 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 460 | } |
| 461 | |
| 462 | #endif // CERES_USE_OPENMP |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 463 | |
| 464 | TEST_F(CovarianceTest, ConstantParameterBlock) { |
| 465 | problem_.SetParameterBlockConstant(parameters_); |
| 466 | |
| 467 | // J |
| 468 | // |
| 469 | // 0 0 0 0 0 0 |
| 470 | // 0 0 0 0 0 0 |
| 471 | // 0 0 2 0 0 0 |
| 472 | // 0 0 0 2 0 0 |
| 473 | // 0 0 0 0 2 0 |
| 474 | // 0 0 0 0 0 5 |
| 475 | // 0 0 1 2 3 0 |
| 476 | // 0 0 0 0 0 2 |
| 477 | |
| 478 | // J'J |
| 479 | // |
| 480 | // 0 0 0 0 0 0 |
| 481 | // 0 0 0 0 0 0 |
| 482 | // 0 0 5 2 3 0 |
| 483 | // 0 0 2 8 6 0 |
| 484 | // 0 0 3 6 13 0 |
| 485 | // 0 0 0 0 0 29 |
| 486 | |
| 487 | // pinv(J'J) computed using octave. |
| 488 | double expected_covariance[] = { |
| 489 | 0, 0, 0, 0, 0, 0, // NOLINT |
| 490 | 0, 0, 0, 0, 0, 0, // NOLINT |
| 491 | 0, 0, 0.23611, -0.02778, -0.04167, -0.00000, // NOLINT |
| 492 | 0, 0, -0.02778, 0.19444, -0.08333, -0.00000, // NOLINT |
| 493 | 0, 0, -0.04167, -0.08333, 0.12500, -0.00000, // NOLINT |
| 494 | 0, 0, -0.00000, -0.00000, -0.00000, 0.03448 // NOLINT |
| 495 | }; |
| 496 | |
| 497 | Covariance::Options options; |
Sameer Agarwal | 5d00bf4 | 2013-06-24 13:24:35 -0700 | [diff] [blame] | 498 | |
| 499 | #ifndef CERES_NO_SUITESPARSE |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 500 | options.algorithm_type = SPARSE_CHOLESKY; |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 501 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
Sameer Agarwal | b22d063 | 2013-08-15 22:55:23 -0700 | [diff] [blame] | 502 | |
| 503 | options.algorithm_type = SPARSE_QR; |
| 504 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
Sameer Agarwal | 5d00bf4 | 2013-06-24 13:24:35 -0700 | [diff] [blame] | 505 | #endif |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 506 | |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 507 | options.algorithm_type = DENSE_SVD; |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 508 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 509 | } |
| 510 | |
| 511 | TEST_F(CovarianceTest, LocalParameterization) { |
| 512 | double* x = parameters_; |
| 513 | double* y = x + 2; |
| 514 | |
| 515 | problem_.SetParameterization(x, new PolynomialParameterization); |
| 516 | |
| 517 | vector<int> subset; |
| 518 | subset.push_back(2); |
| 519 | problem_.SetParameterization(y, new SubsetParameterization(3, subset)); |
| 520 | |
| 521 | // Raw Jacobian: J |
| 522 | // |
| 523 | // 1 0 0 0 0 0 |
| 524 | // 0 1 0 0 0 0 |
| 525 | // 0 0 2 0 0 0 |
| 526 | // 0 0 0 2 0 0 |
| 527 | // 0 0 0 0 0 0 |
| 528 | // 0 0 0 0 0 5 |
| 529 | // -5 -6 1 2 0 0 |
| 530 | // 3 -2 0 0 0 2 |
| 531 | |
| 532 | // Global to local jacobian: A |
| 533 | // |
| 534 | // |
| 535 | // 1 0 0 0 0 |
| 536 | // 1 0 0 0 0 |
| 537 | // 0 1 0 0 0 |
| 538 | // 0 0 1 0 0 |
| 539 | // 0 0 0 1 0 |
| 540 | // 0 0 0 0 1 |
| 541 | |
| 542 | // A * pinv((J*A)'*(J*A)) * A' |
| 543 | // Computed using octave. |
| 544 | double expected_covariance[] = { |
| 545 | 0.01766, 0.01766, 0.02158, 0.04316, 0.00000, -0.00122, |
| 546 | 0.01766, 0.01766, 0.02158, 0.04316, 0.00000, -0.00122, |
| 547 | 0.02158, 0.02158, 0.24860, -0.00281, 0.00000, -0.00149, |
| 548 | 0.04316, 0.04316, -0.00281, 0.24439, 0.00000, -0.00298, |
| 549 | 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, |
| 550 | -0.00122, -0.00122, -0.00149, -0.00298, 0.00000, 0.03457 |
| 551 | }; |
| 552 | |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 553 | Covariance::Options options; |
Sameer Agarwal | 5d00bf4 | 2013-06-24 13:24:35 -0700 | [diff] [blame] | 554 | |
| 555 | #ifndef CERES_NO_SUITESPARSE |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 556 | options.algorithm_type = SPARSE_CHOLESKY; |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 557 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
Sameer Agarwal | b22d063 | 2013-08-15 22:55:23 -0700 | [diff] [blame] | 558 | |
| 559 | options.algorithm_type = SPARSE_QR; |
| 560 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
Sameer Agarwal | 5d00bf4 | 2013-06-24 13:24:35 -0700 | [diff] [blame] | 561 | #endif |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 562 | |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 563 | options.algorithm_type = DENSE_SVD; |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 564 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 565 | } |
| 566 | |
| 567 | |
| 568 | TEST_F(CovarianceTest, TruncatedRank) { |
| 569 | // J |
| 570 | // |
| 571 | // 1 0 0 0 0 0 |
| 572 | // 0 1 0 0 0 0 |
| 573 | // 0 0 2 0 0 0 |
| 574 | // 0 0 0 2 0 0 |
| 575 | // 0 0 0 0 2 0 |
| 576 | // 0 0 0 0 0 5 |
| 577 | // -5 -6 1 2 3 0 |
| 578 | // 3 -2 0 0 0 2 |
| 579 | |
| 580 | // J'J |
| 581 | // |
| 582 | // 35 24 -5 -10 -15 6 |
| 583 | // 24 41 -6 -12 -18 -4 |
| 584 | // -5 -6 5 2 3 0 |
| 585 | // -10 -12 2 8 6 0 |
| 586 | // -15 -18 3 6 13 0 |
| 587 | // 6 -4 0 0 0 29 |
| 588 | |
| 589 | // 3.4142 is the smallest eigen value of J'J. The following matrix |
| 590 | // was obtained by dropping the eigenvector corresponding to this |
| 591 | // eigenvalue. |
| 592 | double expected_covariance[] = { |
| 593 | 5.4135e-02, -3.5121e-02, 1.7257e-04, 3.4514e-04, 5.1771e-04, -1.6076e-02, |
| 594 | -3.5121e-02, 3.8667e-02, -1.9288e-03, -3.8576e-03, -5.7864e-03, 1.2549e-02, |
| 595 | 1.7257e-04, -1.9288e-03, 2.3235e-01, -3.5297e-02, -5.2946e-02, -3.3329e-04, |
| 596 | 3.4514e-04, -3.8576e-03, -3.5297e-02, 1.7941e-01, -1.0589e-01, -6.6659e-04, |
| 597 | 5.1771e-04, -5.7864e-03, -5.2946e-02, -1.0589e-01, 9.1162e-02, -9.9988e-04, |
| 598 | -1.6076e-02, 1.2549e-02, -3.3329e-04, -6.6659e-04, -9.9988e-04, 3.9539e-02 |
| 599 | }; |
| 600 | |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 601 | |
Sameer Agarwal | 7129cd3 | 2013-06-02 19:35:29 -0700 | [diff] [blame] | 602 | { |
| 603 | Covariance::Options options; |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 604 | options.algorithm_type = DENSE_SVD; |
Sameer Agarwal | 7129cd3 | 2013-06-02 19:35:29 -0700 | [diff] [blame] | 605 | // Force dropping of the smallest eigenvector. |
| 606 | options.null_space_rank = 1; |
| 607 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 608 | } |
| 609 | |
| 610 | { |
| 611 | Covariance::Options options; |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 612 | options.algorithm_type = DENSE_SVD; |
Sameer Agarwal | 7129cd3 | 2013-06-02 19:35:29 -0700 | [diff] [blame] | 613 | // Force dropping of the smallest eigenvector via the ratio but |
| 614 | // automatic truncation. |
| 615 | options.min_reciprocal_condition_number = 0.044494; |
| 616 | options.null_space_rank = -1; |
| 617 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 618 | } |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 619 | } |
| 620 | |
| 621 | class RankDeficientCovarianceTest : public CovarianceTest { |
| 622 | protected: |
| 623 | virtual void SetUp() { |
| 624 | double* x = parameters_; |
| 625 | double* y = x + 2; |
| 626 | double* z = y + 3; |
| 627 | |
| 628 | { |
| 629 | double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; |
| 630 | problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x); |
| 631 | } |
| 632 | |
| 633 | { |
| 634 | double jacobian[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; |
| 635 | problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y); |
| 636 | } |
| 637 | |
| 638 | { |
| 639 | double jacobian = 5.0; |
| 640 | problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), NULL, z); |
| 641 | } |
| 642 | |
| 643 | { |
| 644 | double jacobian1[] = { 0.0, 0.0, 0.0 }; |
| 645 | double jacobian2[] = { -5.0, -6.0 }; |
| 646 | problem_.AddResidualBlock( |
| 647 | new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2), |
| 648 | NULL, |
| 649 | y, |
| 650 | x); |
| 651 | } |
| 652 | |
| 653 | { |
| 654 | double jacobian1[] = {2.0 }; |
| 655 | double jacobian2[] = { 3.0, -2.0 }; |
| 656 | problem_.AddResidualBlock( |
| 657 | new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2), |
| 658 | NULL, |
| 659 | z, |
| 660 | x); |
| 661 | } |
| 662 | |
| 663 | all_covariance_blocks_.push_back(make_pair(x, x)); |
| 664 | all_covariance_blocks_.push_back(make_pair(y, y)); |
| 665 | all_covariance_blocks_.push_back(make_pair(z, z)); |
| 666 | all_covariance_blocks_.push_back(make_pair(x, y)); |
| 667 | all_covariance_blocks_.push_back(make_pair(x, z)); |
| 668 | all_covariance_blocks_.push_back(make_pair(y, z)); |
| 669 | |
| 670 | column_bounds_[x] = make_pair(0, 2); |
| 671 | column_bounds_[y] = make_pair(2, 5); |
| 672 | column_bounds_[z] = make_pair(5, 6); |
| 673 | } |
| 674 | }; |
| 675 | |
Sameer Agarwal | 7129cd3 | 2013-06-02 19:35:29 -0700 | [diff] [blame] | 676 | TEST_F(RankDeficientCovarianceTest, AutomaticTruncation) { |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 677 | // J |
| 678 | // |
| 679 | // 1 0 0 0 0 0 |
| 680 | // 0 1 0 0 0 0 |
| 681 | // 0 0 0 0 0 0 |
| 682 | // 0 0 0 0 0 0 |
| 683 | // 0 0 0 0 0 0 |
| 684 | // 0 0 0 0 0 5 |
| 685 | // -5 -6 0 0 0 0 |
| 686 | // 3 -2 0 0 0 2 |
| 687 | |
| 688 | // J'J |
| 689 | // |
| 690 | // 35 24 0 0 0 6 |
| 691 | // 24 41 0 0 0 -4 |
| 692 | // 0 0 0 0 0 0 |
| 693 | // 0 0 0 0 0 0 |
| 694 | // 0 0 0 0 0 0 |
| 695 | // 6 -4 0 0 0 29 |
| 696 | |
| 697 | // pinv(J'J) computed using octave. |
| 698 | double expected_covariance[] = { |
| 699 | 0.053998, -0.033145, 0.000000, 0.000000, 0.000000, -0.015744, |
| 700 | -0.033145, 0.045067, 0.000000, 0.000000, 0.000000, 0.013074, |
| 701 | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 702 | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 703 | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 704 | -0.015744, 0.013074, 0.000000, 0.000000, 0.000000, 0.039543 |
| 705 | }; |
| 706 | |
| 707 | Covariance::Options options; |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 708 | options.algorithm_type = DENSE_SVD; |
Sameer Agarwal | 7129cd3 | 2013-06-02 19:35:29 -0700 | [diff] [blame] | 709 | options.null_space_rank = -1; |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 710 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 711 | } |
| 712 | |
Sameer Agarwal | 8f7e896 | 2013-06-03 13:07:39 -0700 | [diff] [blame] | 713 | class LargeScaleCovarianceTest : public ::testing::Test { |
| 714 | protected: |
| 715 | virtual void SetUp() { |
| 716 | num_parameter_blocks_ = 2000; |
| 717 | parameter_block_size_ = 5; |
| 718 | parameters_.reset(new double[parameter_block_size_ * num_parameter_blocks_]); |
| 719 | |
| 720 | Matrix jacobian(parameter_block_size_, parameter_block_size_); |
| 721 | for (int i = 0; i < num_parameter_blocks_; ++i) { |
| 722 | jacobian.setIdentity(); |
| 723 | jacobian *= (i + 1); |
| 724 | |
| 725 | double* block_i = parameters_.get() + i * parameter_block_size_; |
| 726 | problem_.AddResidualBlock(new UnaryCostFunction(parameter_block_size_, |
| 727 | parameter_block_size_, |
| 728 | jacobian.data()), |
| 729 | NULL, |
Sameer Agarwal | dcee120 | 2013-12-07 21:48:56 -0800 | [diff] [blame] | 730 | block_i); |
Sameer Agarwal | 8f7e896 | 2013-06-03 13:07:39 -0700 | [diff] [blame] | 731 | for (int j = i; j < num_parameter_blocks_; ++j) { |
| 732 | double* block_j = parameters_.get() + j * parameter_block_size_; |
| 733 | all_covariance_blocks_.push_back(make_pair(block_i, block_j)); |
| 734 | } |
| 735 | } |
| 736 | } |
| 737 | |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 738 | void ComputeAndCompare(CovarianceAlgorithmType algorithm_type, |
| 739 | int num_threads) { |
Sameer Agarwal | 8f7e896 | 2013-06-03 13:07:39 -0700 | [diff] [blame] | 740 | Covariance::Options options; |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 741 | options.algorithm_type = algorithm_type; |
Sameer Agarwal | 8f7e896 | 2013-06-03 13:07:39 -0700 | [diff] [blame] | 742 | options.num_threads = num_threads; |
| 743 | Covariance covariance(options); |
| 744 | EXPECT_TRUE(covariance.Compute(all_covariance_blocks_, &problem_)); |
| 745 | |
| 746 | Matrix expected(parameter_block_size_, parameter_block_size_); |
| 747 | Matrix actual(parameter_block_size_, parameter_block_size_); |
| 748 | const double kTolerance = 1e-16; |
| 749 | |
| 750 | for (int i = 0; i < num_parameter_blocks_; ++i) { |
| 751 | expected.setIdentity(); |
| 752 | expected /= (i + 1.0) * (i + 1.0); |
| 753 | |
| 754 | double* block_i = parameters_.get() + i * parameter_block_size_; |
| 755 | covariance.GetCovarianceBlock(block_i, block_i, actual.data()); |
| 756 | EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance) |
| 757 | << "block: " << i << ", " << i << "\n" |
| 758 | << "expected: \n" << expected << "\n" |
| 759 | << "actual: \n" << actual; |
| 760 | |
| 761 | expected.setZero(); |
| 762 | for (int j = i + 1; j < num_parameter_blocks_; ++j) { |
| 763 | double* block_j = parameters_.get() + j * parameter_block_size_; |
| 764 | covariance.GetCovarianceBlock(block_i, block_j, actual.data()); |
| 765 | EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance) |
| 766 | << "block: " << i << ", " << j << "\n" |
| 767 | << "expected: \n" << expected << "\n" |
| 768 | << "actual: \n" << actual; |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | scoped_array<double> parameters_; |
| 774 | int parameter_block_size_; |
| 775 | int num_parameter_blocks_; |
| 776 | |
| 777 | Problem problem_; |
| 778 | vector<pair<const double*, const double*> > all_covariance_blocks_; |
| 779 | }; |
| 780 | |
| 781 | #if !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP) |
| 782 | |
| 783 | TEST_F(LargeScaleCovarianceTest, Parallel) { |
Sameer Agarwal | 5a97471 | 2013-06-07 22:38:30 -0700 | [diff] [blame] | 784 | ComputeAndCompare(SPARSE_CHOLESKY, 4); |
Sameer Agarwal | b22d063 | 2013-08-15 22:55:23 -0700 | [diff] [blame] | 785 | ComputeAndCompare(SPARSE_QR, 4); |
Sameer Agarwal | 8f7e896 | 2013-06-03 13:07:39 -0700 | [diff] [blame] | 786 | } |
| 787 | |
| 788 | #endif // !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP) |
| 789 | |
Sameer Agarwal | 02706c1 | 2013-05-12 22:07:55 -0700 | [diff] [blame] | 790 | } // namespace internal |
| 791 | } // namespace ceres |