Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 2 | // Copyright 2012 Google Inc. All rights reserved. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 30 | // sameeragarwal@google.com (Sameer Agarwal) |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 31 | // |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 32 | // This tests the TrustRegionMinimizer loop using a direct Evaluator |
| 33 | // implementation, rather than having a test that goes through all the |
| 34 | // Program and Problem machinery. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 35 | |
| 36 | #include <cmath> |
Sameer Agarwal | a406b17 | 2012-08-18 15:28:49 -0700 | [diff] [blame] | 37 | #include "ceres/cost_function.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 38 | #include "ceres/dense_qr_solver.h" |
| 39 | #include "ceres/dense_sparse_matrix.h" |
| 40 | #include "ceres/evaluator.h" |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 41 | #include "ceres/internal/port.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 42 | #include "ceres/linear_solver.h" |
| 43 | #include "ceres/minimizer.h" |
Sameer Agarwal | a406b17 | 2012-08-18 15:28:49 -0700 | [diff] [blame] | 44 | #include "ceres/problem.h" |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 45 | #include "ceres/trust_region_minimizer.h" |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 46 | #include "ceres/trust_region_strategy.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 47 | #include "gtest/gtest.h" |
| 48 | |
| 49 | namespace ceres { |
| 50 | namespace internal { |
| 51 | |
| 52 | // Templated Evaluator for Powell's function. The template parameters |
| 53 | // indicate which of the four variables/columns of the jacobian are |
| 54 | // active. This is equivalent to constructing a problem and using the |
| 55 | // SubsetLocalParameterization. This allows us to test the support for |
| 56 | // the Evaluator::Plus operation besides checking for the basic |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 57 | // performance of the trust region algorithm. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 58 | template <bool col1, bool col2, bool col3, bool col4> |
| 59 | class PowellEvaluator2 : public Evaluator { |
| 60 | public: |
| 61 | PowellEvaluator2() |
| 62 | : num_active_cols_( |
| 63 | (col1 ? 1 : 0) + |
| 64 | (col2 ? 1 : 0) + |
| 65 | (col3 ? 1 : 0) + |
| 66 | (col4 ? 1 : 0)) { |
| 67 | VLOG(1) << "Columns: " |
| 68 | << col1 << " " |
| 69 | << col2 << " " |
| 70 | << col3 << " " |
| 71 | << col4; |
| 72 | } |
| 73 | |
| 74 | virtual ~PowellEvaluator2() {} |
| 75 | |
| 76 | // Implementation of Evaluator interface. |
| 77 | virtual SparseMatrix* CreateJacobian() const { |
| 78 | CHECK(col1 || col2 || col3 || col4); |
| 79 | DenseSparseMatrix* dense_jacobian = |
| 80 | new DenseSparseMatrix(NumResiduals(), NumEffectiveParameters()); |
| 81 | dense_jacobian->SetZero(); |
| 82 | return dense_jacobian; |
| 83 | } |
| 84 | |
| 85 | virtual bool Evaluate(const double* state, |
| 86 | double* cost, |
| 87 | double* residuals, |
Keir Mierle | f44907f | 2012-07-06 13:52:32 -0700 | [diff] [blame] | 88 | double* /* gradient */, |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 89 | SparseMatrix* jacobian) { |
| 90 | double x1 = state[0]; |
| 91 | double x2 = state[1]; |
| 92 | double x3 = state[2]; |
| 93 | double x4 = state[3]; |
| 94 | |
| 95 | VLOG(1) << "State: " |
| 96 | << "x1=" << x1 << ", " |
| 97 | << "x2=" << x2 << ", " |
| 98 | << "x3=" << x3 << ", " |
| 99 | << "x4=" << x4 << "."; |
| 100 | |
| 101 | double f1 = x1 + 10.0 * x2; |
| 102 | double f2 = sqrt(5.0) * (x3 - x4); |
| 103 | double f3 = pow(x2 - 2.0 * x3, 2.0); |
| 104 | double f4 = sqrt(10.0) * pow(x1 - x4, 2.0); |
| 105 | |
| 106 | VLOG(1) << "Function: " |
| 107 | << "f1=" << f1 << ", " |
| 108 | << "f2=" << f2 << ", " |
| 109 | << "f3=" << f3 << ", " |
| 110 | << "f4=" << f4 << "."; |
| 111 | |
| 112 | *cost = (f1*f1 + f2*f2 + f3*f3 + f4*f4) / 2.0; |
| 113 | |
| 114 | VLOG(1) << "Cost: " << *cost; |
| 115 | |
| 116 | if (residuals != NULL) { |
| 117 | residuals[0] = f1; |
| 118 | residuals[1] = f2; |
| 119 | residuals[2] = f3; |
| 120 | residuals[3] = f4; |
| 121 | } |
| 122 | |
| 123 | if (jacobian != NULL) { |
| 124 | DenseSparseMatrix* dense_jacobian; |
| 125 | dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian); |
| 126 | dense_jacobian->SetZero(); |
| 127 | |
| 128 | AlignedMatrixRef jacobian_matrix = dense_jacobian->mutable_matrix(); |
| 129 | CHECK_EQ(jacobian_matrix.cols(), num_active_cols_); |
| 130 | |
| 131 | int column_index = 0; |
| 132 | if (col1) { |
| 133 | jacobian_matrix.col(column_index++) << |
| 134 | 1.0, |
| 135 | 0.0, |
| 136 | 0.0, |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 137 | sqrt(10.0) * 2.0 * (x1 - x4) * (1.0 - x4); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 138 | } |
| 139 | if (col2) { |
| 140 | jacobian_matrix.col(column_index++) << |
| 141 | 10.0, |
| 142 | 0.0, |
| 143 | 2.0*(x2 - 2.0*x3)*(1.0 - 2.0*x3), |
| 144 | 0.0; |
| 145 | } |
| 146 | |
| 147 | if (col3) { |
| 148 | jacobian_matrix.col(column_index++) << |
| 149 | 0.0, |
| 150 | sqrt(5.0), |
| 151 | 2.0*(x2 - 2.0*x3)*(x2 - 2.0), |
| 152 | 0.0; |
| 153 | } |
| 154 | |
| 155 | if (col4) { |
| 156 | jacobian_matrix.col(column_index++) << |
| 157 | 0.0, |
| 158 | -sqrt(5.0), |
| 159 | 0.0, |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 160 | sqrt(10.0) * 2.0 * (x1 - x4) * (x1 - 1.0); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 161 | } |
| 162 | VLOG(1) << "\n" << jacobian_matrix; |
| 163 | } |
| 164 | return true; |
| 165 | } |
| 166 | |
| 167 | virtual bool Plus(const double* state, |
| 168 | const double* delta, |
| 169 | double* state_plus_delta) const { |
| 170 | int delta_index = 0; |
| 171 | state_plus_delta[0] = (col1 ? state[0] + delta[delta_index++] : state[0]); |
| 172 | state_plus_delta[1] = (col2 ? state[1] + delta[delta_index++] : state[1]); |
| 173 | state_plus_delta[2] = (col3 ? state[2] + delta[delta_index++] : state[2]); |
| 174 | state_plus_delta[3] = (col4 ? state[3] + delta[delta_index++] : state[3]); |
| 175 | return true; |
| 176 | } |
| 177 | |
| 178 | virtual int NumEffectiveParameters() const { return num_active_cols_; } |
| 179 | virtual int NumParameters() const { return 4; } |
| 180 | virtual int NumResiduals() const { return 4; } |
| 181 | |
| 182 | private: |
| 183 | const int num_active_cols_; |
| 184 | }; |
| 185 | |
| 186 | // Templated function to hold a subset of the columns fixed and check |
| 187 | // if the solver converges to the optimal values or not. |
| 188 | template<bool col1, bool col2, bool col3, bool col4> |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 189 | void IsTrustRegionSolveSuccessful(TrustRegionStrategyType strategy_type) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 190 | Solver::Options solver_options; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 191 | LinearSolver::Options linear_solver_options; |
| 192 | DenseQRSolver linear_solver(linear_solver_options); |
| 193 | |
| 194 | double parameters[4] = { 3, -1, 0, 1.0 }; |
| 195 | |
| 196 | // If the column is inactive, then set its value to the optimal |
| 197 | // value. |
| 198 | parameters[0] = (col1 ? parameters[0] : 0.0); |
| 199 | parameters[1] = (col2 ? parameters[1] : 0.0); |
| 200 | parameters[2] = (col3 ? parameters[2] : 0.0); |
| 201 | parameters[3] = (col4 ? parameters[3] : 0.0); |
| 202 | |
| 203 | PowellEvaluator2<col1, col2, col3, col4> powell_evaluator; |
| 204 | scoped_ptr<SparseMatrix> jacobian(powell_evaluator.CreateJacobian()); |
| 205 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 206 | Minimizer::Options minimizer_options(solver_options); |
| 207 | minimizer_options.gradient_tolerance = 1e-26; |
| 208 | minimizer_options.function_tolerance = 1e-26; |
| 209 | minimizer_options.parameter_tolerance = 1e-26; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 210 | minimizer_options.evaluator = &powell_evaluator; |
| 211 | minimizer_options.jacobian = jacobian.get(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 212 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 213 | TrustRegionStrategy::Options trust_region_strategy_options; |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 214 | trust_region_strategy_options.trust_region_strategy_type = strategy_type; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 215 | trust_region_strategy_options.linear_solver = &linear_solver; |
| 216 | trust_region_strategy_options.initial_radius = 1e4; |
| 217 | trust_region_strategy_options.max_radius = 1e20; |
| 218 | trust_region_strategy_options.lm_min_diagonal = 1e-6; |
| 219 | trust_region_strategy_options.lm_max_diagonal = 1e32; |
| 220 | scoped_ptr<TrustRegionStrategy> strategy( |
| 221 | TrustRegionStrategy::Create(trust_region_strategy_options)); |
| 222 | minimizer_options.trust_region_strategy = strategy.get(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 223 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 224 | TrustRegionMinimizer minimizer; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 225 | Solver::Summary summary; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 226 | minimizer.Minimize(minimizer_options, parameters, &summary); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 227 | |
| 228 | // The minimum is at x1 = x2 = x3 = x4 = 0. |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 229 | EXPECT_NEAR(0.0, parameters[0], 0.001); |
| 230 | EXPECT_NEAR(0.0, parameters[1], 0.001); |
| 231 | EXPECT_NEAR(0.0, parameters[2], 0.001); |
| 232 | EXPECT_NEAR(0.0, parameters[3], 0.001); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 233 | }; |
| 234 | |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 235 | TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingLevenbergMarquardt) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 236 | // This case is excluded because this has a local minimum and does |
| 237 | // not find the optimum. This should not affect the correctness of |
| 238 | // this test since we are testing all the other 14 combinations of |
| 239 | // column activations. |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 240 | // |
| 241 | // IsSolveSuccessful<true, true, false, true>(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 242 | |
Sameer Agarwal | 4441b5b | 2012-06-12 18:01:11 -0700 | [diff] [blame] | 243 | const TrustRegionStrategyType kStrategy = LEVENBERG_MARQUARDT; |
| 244 | IsTrustRegionSolveSuccessful<true, true, true, true >(kStrategy); |
| 245 | IsTrustRegionSolveSuccessful<true, true, true, false>(kStrategy); |
| 246 | IsTrustRegionSolveSuccessful<true, false, true, true >(kStrategy); |
| 247 | IsTrustRegionSolveSuccessful<false, true, true, true >(kStrategy); |
| 248 | IsTrustRegionSolveSuccessful<true, true, false, false>(kStrategy); |
| 249 | IsTrustRegionSolveSuccessful<true, false, true, false>(kStrategy); |
| 250 | IsTrustRegionSolveSuccessful<false, true, true, false>(kStrategy); |
| 251 | IsTrustRegionSolveSuccessful<true, false, false, true >(kStrategy); |
| 252 | IsTrustRegionSolveSuccessful<false, true, false, true >(kStrategy); |
| 253 | IsTrustRegionSolveSuccessful<false, false, true, true >(kStrategy); |
| 254 | IsTrustRegionSolveSuccessful<true, false, false, false>(kStrategy); |
| 255 | IsTrustRegionSolveSuccessful<false, true, false, false>(kStrategy); |
| 256 | IsTrustRegionSolveSuccessful<false, false, true, false>(kStrategy); |
| 257 | IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy); |
| 258 | } |
| 259 | |
| 260 | TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingDogleg) { |
| 261 | // The following two cases are excluded because they encounter a local minimum. |
| 262 | // |
| 263 | // IsTrustRegionSolveSuccessful<true, true, false, true >(kStrategy); |
| 264 | // IsTrustRegionSolveSuccessful<true, true, true, true >(kStrategy); |
| 265 | |
| 266 | const TrustRegionStrategyType kStrategy = DOGLEG; |
| 267 | IsTrustRegionSolveSuccessful<true, true, true, false>(kStrategy); |
| 268 | IsTrustRegionSolveSuccessful<true, false, true, true >(kStrategy); |
| 269 | IsTrustRegionSolveSuccessful<false, true, true, true >(kStrategy); |
| 270 | IsTrustRegionSolveSuccessful<true, true, false, false>(kStrategy); |
| 271 | IsTrustRegionSolveSuccessful<true, false, true, false>(kStrategy); |
| 272 | IsTrustRegionSolveSuccessful<false, true, true, false>(kStrategy); |
| 273 | IsTrustRegionSolveSuccessful<true, false, false, true >(kStrategy); |
| 274 | IsTrustRegionSolveSuccessful<false, true, false, true >(kStrategy); |
| 275 | IsTrustRegionSolveSuccessful<false, false, true, true >(kStrategy); |
| 276 | IsTrustRegionSolveSuccessful<true, false, false, false>(kStrategy); |
| 277 | IsTrustRegionSolveSuccessful<false, true, false, false>(kStrategy); |
| 278 | IsTrustRegionSolveSuccessful<false, false, true, false>(kStrategy); |
| 279 | IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 280 | } |
| 281 | |
Sameer Agarwal | a406b17 | 2012-08-18 15:28:49 -0700 | [diff] [blame] | 282 | |
| 283 | class CurveCostFunction : public CostFunction { |
| 284 | public: |
| 285 | CurveCostFunction(int num_vertices, double target_length) |
| 286 | : num_vertices_(num_vertices), target_length_(target_length) { |
| 287 | set_num_residuals(1); |
| 288 | for (int i = 0; i < num_vertices_; ++i) { |
| 289 | mutable_parameter_block_sizes()->push_back(2); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | bool Evaluate(double const* const* parameters, |
| 294 | double* residuals, |
| 295 | double** jacobians) const { |
| 296 | residuals[0] = target_length_; |
| 297 | |
| 298 | for (int i = 0; i < num_vertices_; ++i) { |
| 299 | int prev = (num_vertices_ + i - 1) % num_vertices_; |
| 300 | double length = 0.0; |
| 301 | for (int dim = 0; dim < 2; dim++) { |
| 302 | const double diff = parameters[prev][dim] - parameters[i][dim]; |
| 303 | length += diff * diff; |
| 304 | } |
| 305 | residuals[0] -= sqrt(length); |
| 306 | } |
| 307 | |
| 308 | if (jacobians == NULL) { |
| 309 | return true; |
| 310 | } |
| 311 | |
| 312 | for (int i = 0; i < num_vertices_; ++i) { |
| 313 | if (jacobians[i] != NULL) { |
| 314 | int prev = (num_vertices_ + i - 1) % num_vertices_; |
| 315 | int next = (i + 1) % num_vertices_; |
| 316 | |
| 317 | double u[2], v[2]; |
| 318 | double norm_u = 0., norm_v = 0.; |
| 319 | for (int dim = 0; dim < 2; dim++) { |
| 320 | u[dim] = parameters[i][dim] - parameters[prev][dim]; |
| 321 | norm_u += u[dim] * u[dim]; |
| 322 | v[dim] = parameters[next][dim] - parameters[i][dim]; |
| 323 | norm_v += v[dim] * v[dim]; |
| 324 | } |
| 325 | |
| 326 | norm_u = sqrt(norm_u); |
| 327 | norm_v = sqrt(norm_v); |
| 328 | |
| 329 | for (int dim = 0; dim < 2; dim++) { |
| 330 | jacobians[i][dim] = 0.; |
| 331 | |
| 332 | if (norm_u > std::numeric_limits< double >::min()) { |
| 333 | jacobians[i][dim] -= u[dim] / norm_u; |
| 334 | } |
| 335 | |
| 336 | if (norm_v > std::numeric_limits< double >::min()) { |
| 337 | jacobians[i][dim] += v[dim] / norm_v; |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | return true; |
| 344 | } |
| 345 | |
| 346 | private: |
| 347 | int num_vertices_; |
| 348 | double target_length_; |
| 349 | }; |
| 350 | |
| 351 | TEST(TrustRegionMinimizer, JacobiScalingTest) { |
| 352 | int N = 6; |
| 353 | std::vector< double* > y(N); |
| 354 | const double pi = 3.1415926535897932384626433; |
| 355 | for (int i = 0; i < N; i++) { |
| 356 | double theta = i * 2. * pi/ static_cast< double >(N); |
| 357 | y[i] = new double[2]; |
| 358 | y[i][0] = cos(theta); |
| 359 | y[i][1] = sin(theta); |
| 360 | } |
| 361 | |
| 362 | Problem problem; |
| 363 | problem.AddResidualBlock(new CurveCostFunction(N, 10.), NULL, y); |
| 364 | Solver::Options options; |
| 365 | options.linear_solver_type = ceres::DENSE_QR; |
| 366 | Solver::Summary summary; |
| 367 | Solve(options, &problem, &summary); |
| 368 | EXPECT_LE(summary.final_cost, 1e-10); |
Sameer Agarwal | 66fcc7d | 2012-10-08 09:54:16 -0700 | [diff] [blame] | 369 | |
| 370 | for (int i = 0; i < N; i++) { |
| 371 | delete y[i]; |
| 372 | } |
Sameer Agarwal | a406b17 | 2012-08-18 15:28:49 -0700 | [diff] [blame] | 373 | } |
| 374 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 375 | } // namespace internal |
| 376 | } // namespace ceres |