blob: 6953075bc420be991802f0da97069d2f3d61c29f [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include "ceres/visibility_based_preconditioner.h"
32
33#include <algorithm>
34#include <functional>
35#include <iterator>
Keir Mierle8ebb0732012-04-30 23:09:08 -070036#include <set>
37#include <utility>
38#include <vector>
39#include <glog/logging.h>
40#include "Eigen/Dense"
41#include "ceres/block_random_access_sparse_matrix.h"
42#include "ceres/block_sparse_matrix.h"
43#include "ceres/canonical_views_clustering.h"
44#include "ceres/collections_port.h"
45#include "ceres/detect_structure.h"
46#include "ceres/graph.h"
47#include "ceres/graph_algorithms.h"
48#include "ceres/linear_solver.h"
49#include "ceres/schur_eliminator.h"
50#include "ceres/visibility.h"
51#include "ceres/internal/scoped_ptr.h"
52
53namespace ceres {
54namespace internal {
55
56// TODO(sameeragarwal): Currently these are magic weights for the
57// preconditioner construction. Move these higher up into the Options
58// struct and provide some guidelines for choosing them.
59//
60// This will require some more work on the clustering algorithm and
61// possibly some more refactoring of the code.
62static const double kSizePenaltyWeight = 3.0;
63static const double kSimilarityPenaltyWeight = 0.0;
64
65#ifndef CERES_NO_SUITESPARSE
66VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
67 const CompressedRowBlockStructure& bs,
68 const LinearSolver::Options& options)
69 : options_(options),
70 num_blocks_(0),
71 num_clusters_(0),
72 factor_(NULL) {
73 CHECK_GT(options_.num_eliminate_blocks, 0);
74 CHECK(options_.preconditioner_type == SCHUR_JACOBI ||
75 options_.preconditioner_type == CLUSTER_JACOBI ||
76 options_.preconditioner_type == CLUSTER_TRIDIAGONAL)
77 << "Unknown preconditioner type: " << options_.preconditioner_type;
78 num_blocks_ = bs.cols.size() - options_.num_eliminate_blocks;
79 CHECK_GT(num_blocks_, 0)
80 << "Jacobian should have atleast 1 f_block for "
81 << "visibility based preconditioning.";
82
83 // Vector of camera block sizes
84 block_size_.resize(num_blocks_);
85 for (int i = 0; i < num_blocks_; ++i) {
86 block_size_[i] = bs.cols[i + options_.num_eliminate_blocks].size;
87 }
88
89 const time_t start_time = time(NULL);
90 switch (options_.preconditioner_type) {
91 case SCHUR_JACOBI:
92 ComputeSchurJacobiSparsity(bs);
93 break;
94 case CLUSTER_JACOBI:
95 ComputeClusterJacobiSparsity(bs);
96 break;
97 case CLUSTER_TRIDIAGONAL:
98 ComputeClusterTridiagonalSparsity(bs);
99 break;
100 default:
101 LOG(FATAL) << "Unknown preconditioner type";
102 }
103 const time_t structure_time = time(NULL);
104 InitStorage(bs);
105 const time_t storage_time = time(NULL);
106 InitEliminator(bs);
107 const time_t eliminator_time = time(NULL);
108
109 // Allocate temporary storage for a vector used during
110 // RightMultiply.
111 tmp_rhs_ = CHECK_NOTNULL(ss_.CreateDenseVector(NULL,
112 m_->num_rows(),
113 m_->num_rows()));
114 const time_t init_time = time(NULL);
115 VLOG(2) << "init time: "
116 << init_time - start_time
117 << " structure time: " << structure_time - start_time
118 << " storage time:" << storage_time - structure_time
119 << " eliminator time: " << eliminator_time - storage_time;
120}
121
122VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {
123 if (factor_ != NULL) {
124 ss_.Free(factor_);
125 factor_ = NULL;
126 }
127 if (tmp_rhs_ != NULL) {
128 ss_.Free(tmp_rhs_);
129 tmp_rhs_ = NULL;
130 }
131}
132
133// Determine the sparsity structure of the SCHUR_JACOBI
134// preconditioner. SCHUR_JACOBI is an extreme case of a visibility
135// based preconditioner where each camera block corresponds to a
136// cluster and there is no interaction between clusters.
137void VisibilityBasedPreconditioner::ComputeSchurJacobiSparsity(
138 const CompressedRowBlockStructure& bs) {
139 num_clusters_ = num_blocks_;
140 cluster_membership_.resize(num_blocks_);
141 cluster_pairs_.clear();
142
143 // Each camea block is a member of its own cluster and the only
144 // cluster pairs are the self edges (i,i).
145 for (int i = 0; i < num_clusters_; ++i) {
146 cluster_membership_[i] = i;
147 cluster_pairs_.insert(make_pair(i, i));
148 }
149}
150
151// Determine the sparsity structure of the CLUSTER_JACOBI
152// preconditioner. It clusters cameras using their scene
153// visibility. The clusters form the diagonal blocks of the
154// preconditioner matrix.
155void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
156 const CompressedRowBlockStructure& bs) {
157 vector<set<int> > visibility;
158 ComputeVisibility(bs, options_.num_eliminate_blocks, &visibility);
159 CHECK_EQ(num_blocks_, visibility.size());
160 ClusterCameras(visibility);
161 cluster_pairs_.clear();
162 for (int i = 0; i < num_clusters_; ++i) {
163 cluster_pairs_.insert(make_pair(i, i));
164 }
165}
166
167// Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
168// preconditioner. It clusters cameras using using the scene
169// visibility and then finds the strongly interacting pairs of
170// clusters by constructing another graph with the clusters as
171// vertices and approximating it with a degree-2 maximum spanning
172// forest. The set of edges in this forest are the cluster pairs.
173void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
174 const CompressedRowBlockStructure& bs) {
175 vector<set<int> > visibility;
176 ComputeVisibility(bs, options_.num_eliminate_blocks, &visibility);
177 CHECK_EQ(num_blocks_, visibility.size());
178 ClusterCameras(visibility);
179
180 // Construct a weighted graph on the set of clusters, where the
181 // edges are the number of 3D points/e_blocks visible in both the
182 // clusters at the ends of the edge. Return an approximate degree-2
183 // maximum spanning forest of this graph.
184 vector<set<int> > cluster_visibility;
185 ComputeClusterVisibility(visibility, &cluster_visibility);
186 scoped_ptr<Graph<int> > cluster_graph(
187 CHECK_NOTNULL(CreateClusterGraph(cluster_visibility)));
188 scoped_ptr<Graph<int> > forest(
189 CHECK_NOTNULL(Degree2MaximumSpanningForest(*cluster_graph)));
190 ForestToClusterPairs(*forest, &cluster_pairs_);
191}
192
193// Allocate storage for the preconditioner matrix.
194void VisibilityBasedPreconditioner::InitStorage(
195 const CompressedRowBlockStructure& bs) {
196 ComputeBlockPairsInPreconditioner(bs);
197 m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_));
198}
199
200// Call the canonical views algorithm and cluster the cameras based on
201// their visibility sets. The visibility set of a camera is the set of
202// e_blocks/3D points in the scene that are seen by it.
203//
204// The cluster_membership_ vector is updated to indicate cluster
205// memberships for each camera block.
206void VisibilityBasedPreconditioner::ClusterCameras(
207 const vector<set<int> >& visibility) {
208 scoped_ptr<Graph<int> > schur_complement_graph(
209 CHECK_NOTNULL(CreateSchurComplementGraph(visibility)));
210
211 CanonicalViewsClusteringOptions options;
212 options.size_penalty_weight = kSizePenaltyWeight;
213 options.similarity_penalty_weight = kSimilarityPenaltyWeight;
214
215 vector<int> centers;
216 HashMap<int, int> membership;
217 ComputeCanonicalViewsClustering(*schur_complement_graph,
218 options,
219 &centers,
220 &membership);
221 num_clusters_ = centers.size();
222 CHECK_GT(num_clusters_, 0);
223 VLOG(2) << "num_clusters: " << num_clusters_;
224 FlattenMembershipMap(membership, &cluster_membership_);
225}
226
227// Compute the block sparsity structure of the Schur complement
228// matrix. For each pair of cameras contributing a non-zero cell to
229// the schur complement, determine if that cell is present in the
230// preconditioner or not.
231//
232// A pair of cameras contribute a cell to the preconditioner if they
233// are part of the same cluster or if the the two clusters that they
234// belong have an edge connecting them in the degree-2 maximum
235// spanning forest.
236//
237// For example, a camera pair (i,j) where i belonges to cluster1 and
238// j belongs to cluster2 (assume that cluster1 < cluster2).
239//
240// The cell corresponding to (i,j) is present in the preconditioner
241// if cluster1 == cluster2 or the pair (cluster1, cluster2) were
242// connected by an edge in the degree-2 maximum spanning forest.
243//
244// Since we have already expanded the forest into a set of camera
245// pairs/edges, including self edges, the check can be reduced to
246// checking membership of (cluster1, cluster2) in cluster_pairs_.
247void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
248 const CompressedRowBlockStructure& bs) {
249 block_pairs_.clear();
250 for (int i = 0; i < num_blocks_; ++i) {
251 block_pairs_.insert(make_pair(i, i));
252 }
253
254 int r = 0;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700255 const int num_row_blocks = bs.rows.size();
256 const int num_eliminate_blocks = options_.num_eliminate_blocks;
257
258 // Iterate over each row of the matrix. The block structure of the
259 // matrix is assumed to be sorted in order of the e_blocks/point
260 // blocks. Thus all row blocks containing an e_block/point occur
261 // contiguously. Further, if present, an e_block is always the first
262 // parameter block in each row block. These structural assumptions
263 // are common to all Schur complement based solvers in Ceres.
264 //
265 // For each e_block/point block we identify the set of cameras
266 // seeing it. The cross product of this set with itself is the set
267 // of non-zero cells contibuted by this e_block.
268 //
269 // The time complexity of this is O(nm^2) where, n is the number of
270 // 3d points and m is the maximum number of cameras seeing any
271 // point, which for most scenes is a fairly small number.
272 while (r < num_row_blocks) {
273 int e_block_id = bs.rows[r].cells.front().block_id;
274 if (e_block_id >= num_eliminate_blocks) {
275 // Skip the rows whose first block is an f_block.
276 break;
277 }
278
279 set<int> f_blocks;
280 for (; r < num_row_blocks; ++r) {
281 const CompressedRow& row = bs.rows[r];
282 if (row.cells.front().block_id != e_block_id) {
283 break;
284 }
285
286 // Iterate over the blocks in the row, ignoring the first block
287 // since it is the one to be eliminated and adding the rest to
288 // the list of f_blocks associated with this e_block.
289 for (int c = 1; c < row.cells.size(); ++c) {
290 const Cell& cell = row.cells[c];
291 const int f_block_id = cell.block_id - num_eliminate_blocks;
292 CHECK_GE(f_block_id, 0);
293 f_blocks.insert(f_block_id);
294 }
295 }
296
297 for (set<int>::const_iterator block1 = f_blocks.begin();
298 block1 != f_blocks.end();
299 ++block1) {
300 set<int>::const_iterator block2 = block1;
301 ++block2;
302 for (; block2 != f_blocks.end(); ++block2) {
303 if (IsBlockPairInPreconditioner(*block1, *block2)) {
304 block_pairs_.insert(make_pair(*block1, *block2));
Keir Mierle8ebb0732012-04-30 23:09:08 -0700305 }
306 }
307 }
308 }
309
310 // The remaining rows which do not contain any e_blocks.
311 for (; r < num_row_blocks; ++r) {
312 const CompressedRow& row = bs.rows[r];
313 CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
314 for (int i = 0; i < row.cells.size(); ++i) {
315 const int block1 = row.cells[i].block_id - num_eliminate_blocks;
316 for (int j = 0; j < row.cells.size(); ++j) {
317 const int block2 = row.cells[j].block_id - num_eliminate_blocks;
318 if (block1 <= block2) {
319 if (IsBlockPairInPreconditioner(block1, block2)) {
320 block_pairs_.insert(make_pair(block1, block2));
Keir Mierle8ebb0732012-04-30 23:09:08 -0700321 }
322 }
323 }
324 }
325 }
326
Sameer Agarwaleb22b8b2012-06-11 11:50:43 -0700327 VLOG(1) << "Block pair stats: " << block_pairs_.size();
Keir Mierle8ebb0732012-04-30 23:09:08 -0700328}
329
330// Initialize the SchurEliminator.
331void VisibilityBasedPreconditioner::InitEliminator(
332 const CompressedRowBlockStructure& bs) {
333 LinearSolver::Options eliminator_options;
334 eliminator_options.num_eliminate_blocks = options_.num_eliminate_blocks;
335 eliminator_options.num_threads = options_.num_threads;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700336
337 DetectStructure(bs, options_.num_eliminate_blocks,
338 &eliminator_options.row_block_size,
339 &eliminator_options.e_block_size,
340 &eliminator_options.f_block_size);
341
342 eliminator_.reset(SchurEliminatorBase::Create(eliminator_options));
343 eliminator_->Init(options_.num_eliminate_blocks, &bs);
344}
345
Sameer Agarwala9d8ef82012-05-14 02:28:05 -0700346// Update the values of the preconditioner matrix and factorize it.
347bool VisibilityBasedPreconditioner::Update(const BlockSparseMatrixBase& A,
348 const double* D) {
Keir Mierle8ebb0732012-04-30 23:09:08 -0700349 const time_t start_time = time(NULL);
350 const int num_rows = m_->num_rows();
351 CHECK_GT(num_rows, 0);
352
353 // We need a dummy rhs vector and a dummy b vector since the Schur
354 // eliminator combines the computation of the reduced camera matrix
355 // with the computation of the right hand side of that linear
356 // system.
357 //
358 // TODO(sameeragarwal): Perhaps its worth refactoring the
359 // SchurEliminator::Eliminate function to allow NULL for the rhs. As
360 // of now it does not seem to be worth the effort.
361 Vector rhs = Vector::Zero(m_->num_rows());
362 Vector b = Vector::Zero(A.num_rows());
363
364 // Compute a subset of the entries of the Schur complement.
365 eliminator_->Eliminate(&A, b.data(), D, m_.get(), rhs.data());
366
367 // Try factorizing the matrix. For SCHUR_JACOBI and CLUSTER_JACOBI,
368 // this should always succeed modulo some numerical/conditioning
369 // problems. For CLUSTER_TRIDIAGONAL, in general the preconditioner
370 // matrix as constructed is not positive definite. However, we will
371 // go ahead and try factorizing it. If it works, great, otherwise we
372 // scale all the cells in the preconditioner corresponding to the
373 // edges in the degree-2 forest and that guarantees positive
374 // definiteness. The proof of this fact can be found in Lemma 1 in
375 // "Visibility Based Preconditioning for Bundle Adjustment".
376 //
377 // Doing the factorization like this saves us matrix mass when
378 // scaling is not needed, which is quite often in our experience.
379 bool status = Factorize();
380
381 // The scaling only affects the tri-diagonal case, since
382 // ScaleOffDiagonalBlocks only pays attenion to the cells that
383 // belong to the edges of the degree-2 forest. In the SCHUR_JACOBI
384 // and the CLUSTER_JACOBI cases, the preconditioner is guaranteed to
385 // be positive semidefinite.
386 if (!status && options_.preconditioner_type == CLUSTER_TRIDIAGONAL) {
387 VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
388 << "scaling";
389 ScaleOffDiagonalCells();
390 status = Factorize();
391 }
392
393 VLOG(2) << "Compute time: " << time(NULL) - start_time;
394 return status;
395}
396
397// Consider the preconditioner matrix as meta-block matrix, whose
398// blocks correspond to the clusters. Then cluster pairs corresponding
399// to edges in the degree-2 forest are off diagonal entries of this
400// matrix. Scaling these off-diagonal entries by 1/2 forces this
401// matrix to be positive definite.
402void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
403 for (set< pair<int, int> >::const_iterator it = block_pairs_.begin();
404 it != block_pairs_.end();
405 ++it) {
406 const int block1 = it->first;
407 const int block2 = it->second;
408 if (!IsBlockPairOffDiagonal(block1, block2)) {
409 continue;
410 }
411
412 int r, c, row_stride, col_stride;
413 CellInfo* cell_info = m_->GetCell(block1, block2,
414 &r, &c,
415 &row_stride, &col_stride);
416 CHECK(cell_info != NULL)
417 << "Cell missing for block pair (" << block1 << "," << block2 << ")"
418 << " cluster pair (" << cluster_membership_[block1]
419 << " " << cluster_membership_[block2] << ")";
420
421 // Ah the magic of tri-diagonal matrices and diagonal
422 // dominance. See Lemma 1 in "Visibility Based Preconditioning
423 // For Bundle Adjustment".
424 MatrixRef m(cell_info->values, row_stride, col_stride);
425 m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
426 }
427}
428
429// Compute the sparse Cholesky factorization of the preconditioner
430// matrix.
431bool VisibilityBasedPreconditioner::Factorize() {
432 // Extract the TripletSparseMatrix that is used for actually storing
433 // S and convert it into a cholmod_sparse object.
434 cholmod_sparse* lhs = ss_.CreateSparseMatrix(
435 down_cast<BlockRandomAccessSparseMatrix*>(
436 m_.get())->mutable_matrix());
437
438 // The matrix is symmetric, and the upper triangular part of the
439 // matrix contains the values.
440 lhs->stype = 1;
441
Sameer Agarwal7a3c43b2012-06-05 23:10:59 -0700442 // Symbolic factorization is computed if we don't already have one handy.
Keir Mierle8ebb0732012-04-30 23:09:08 -0700443 if (factor_ == NULL) {
Sameer Agarwal7a3c43b2012-06-05 23:10:59 -0700444 if (options_.use_block_amd) {
445 factor_ = ss_.BlockAnalyzeCholesky(lhs, block_size_, block_size_);
446 } else {
447 factor_ = ss_.AnalyzeCholesky(lhs);
448 }
Keir Mierle8ebb0732012-04-30 23:09:08 -0700449
Sameer Agarwalcb83b282012-06-06 22:26:09 -0700450 if (VLOG_IS_ON(2)) {
451 cholmod_print_common("Symbolic Analysis", ss_.mutable_cc());
452 }
Sameer Agarwal7a3c43b2012-06-05 23:10:59 -0700453 }
454
455 CHECK_NOTNULL(factor_);
456
Keir Mierle8ebb0732012-04-30 23:09:08 -0700457 bool status = ss_.Cholesky(lhs, factor_);
458 ss_.Free(lhs);
459 return status;
460}
461
462void VisibilityBasedPreconditioner::RightMultiply(const double* x,
463 double* y) const {
464 CHECK_NOTNULL(x);
465 CHECK_NOTNULL(y);
466 SuiteSparse* ss = const_cast<SuiteSparse*>(&ss_);
467
468 const int num_rows = m_->num_rows();
469 memcpy(CHECK_NOTNULL(tmp_rhs_)->x, x, m_->num_rows() * sizeof(*x));
470 cholmod_dense* solution = CHECK_NOTNULL(ss->Solve(factor_, tmp_rhs_));
471 memcpy(y, solution->x, sizeof(*y) * num_rows);
472 ss->Free(solution);
473}
474
475int VisibilityBasedPreconditioner::num_rows() const {
476 return m_->num_rows();
477}
478
479// Classify camera/f_block pairs as in and out of the preconditioner,
480// based on whether the cluster pair that they belong to is in the
481// preconditioner or not.
482bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
483 const int block1,
484 const int block2) const {
485 int cluster1 = cluster_membership_[block1];
486 int cluster2 = cluster_membership_[block2];
487 if (cluster1 > cluster2) {
488 std::swap(cluster1, cluster2);
489 }
490 return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
491}
492
493bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
494 const int block1,
495 const int block2) const {
496 return (cluster_membership_[block1] != cluster_membership_[block2]);
497}
498
499// Convert a graph into a list of edges that includes self edges for
500// each vertex.
501void VisibilityBasedPreconditioner::ForestToClusterPairs(
502 const Graph<int>& forest,
503 HashSet<pair<int, int> >* cluster_pairs) const {
504 CHECK_NOTNULL(cluster_pairs)->clear();
505 const HashSet<int>& vertices = forest.vertices();
506 CHECK_EQ(vertices.size(), num_clusters_);
507
508 // Add all the cluster pairs corresponding to the edges in the
509 // forest.
510 for (HashSet<int>::const_iterator it1 = vertices.begin();
511 it1 != vertices.end();
512 ++it1) {
513 const int cluster1 = *it1;
514 cluster_pairs->insert(make_pair(cluster1, cluster1));
515 const HashSet<int>& neighbors = forest.Neighbors(cluster1);
516 for (HashSet<int>::const_iterator it2 = neighbors.begin();
517 it2 != neighbors.end();
518 ++it2) {
519 const int cluster2 = *it2;
520 if (cluster1 < cluster2) {
521 cluster_pairs->insert(make_pair(cluster1, cluster2));
522 }
523 }
524 }
525}
526
527// The visibilty set of a cluster is the union of the visibilty sets
528// of all its cameras. In other words, the set of points visible to
529// any camera in the cluster.
530void VisibilityBasedPreconditioner::ComputeClusterVisibility(
531 const vector<set<int> >& visibility,
532 vector<set<int> >* cluster_visibility) const {
533 CHECK_NOTNULL(cluster_visibility)->resize(0);
534 cluster_visibility->resize(num_clusters_);
535 for (int i = 0; i < num_blocks_; ++i) {
536 const int cluster_id = cluster_membership_[i];
537 (*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
538 visibility[i].end());
539 }
540}
541
542// Construct a graph whose vertices are the clusters, and the edge
543// weights are the number of 3D points visible to cameras in both the
544// vertices.
545Graph<int>* VisibilityBasedPreconditioner::CreateClusterGraph(
546 const vector<set<int> >& cluster_visibility) const {
547 Graph<int>* cluster_graph = new Graph<int>;
548
549 for (int i = 0; i < num_clusters_; ++i) {
550 cluster_graph->AddVertex(i);
551 }
552
553 for (int i = 0; i < num_clusters_; ++i) {
554 const set<int>& cluster_i = cluster_visibility[i];
555 for (int j = i+1; j < num_clusters_; ++j) {
556 vector<int> intersection;
557 const set<int>& cluster_j = cluster_visibility[j];
558 set_intersection(cluster_i.begin(), cluster_i.end(),
559 cluster_j.begin(), cluster_j.end(),
560 back_inserter(intersection));
561
562 if (intersection.size() > 0) {
563 // Clusters interact strongly when they share a large number
564 // of 3D points. The degree-2 maximum spanning forest
565 // alorithm, iterates on the edges in decreasing order of
566 // their weight, which is the number of points shared by the
567 // two cameras that it connects.
568 cluster_graph->AddEdge(i, j, intersection.size());
569 }
570 }
571 }
572 return cluster_graph;
573}
574
575// Canonical views clustering returns a HashMap from vertices to
576// cluster ids. Convert this into a flat array for quick lookup. It is
577// possible that some of the vertices may not be associated with any
578// cluster. In that case, randomly assign them to one of the clusters.
579void VisibilityBasedPreconditioner::FlattenMembershipMap(
580 const HashMap<int, int>& membership_map,
581 vector<int>* membership_vector) const {
582 CHECK_NOTNULL(membership_vector)->resize(0);
583 membership_vector->resize(num_blocks_, -1);
584 // Iterate over the cluster membership map and update the
585 // cluster_membership_ vector assigning arbitrary cluster ids to
586 // the few cameras that have not been clustered.
587 for (HashMap<int, int>::const_iterator it = membership_map.begin();
588 it != membership_map.end();
589 ++it) {
590 const int camera_id = it->first;
591 int cluster_id = it->second;
592
593 // If the view was not clustered, randomly assign it to one of the
594 // clusters. This preserves the mathematical correctness of the
595 // preconditioner. If there are too many views which are not
596 // clustered, it may lead to some quality degradation though.
597 //
598 // TODO(sameeragarwal): Check if a large number of views have not
599 // been clustered and deal with it?
600 if (cluster_id == -1) {
601 cluster_id = camera_id % num_clusters_;
602 }
603
604 membership_vector->at(camera_id) = cluster_id;
605 }
606}
607
608#endif // CERES_NO_SUITESPARSE
609
610} // namespace internal
611} // namespace ceres