Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/visibility_based_preconditioner.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <functional> |
| 35 | #include <iterator> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 36 | #include <set> |
| 37 | #include <utility> |
| 38 | #include <vector> |
| 39 | #include <glog/logging.h> |
| 40 | #include "Eigen/Dense" |
| 41 | #include "ceres/block_random_access_sparse_matrix.h" |
| 42 | #include "ceres/block_sparse_matrix.h" |
| 43 | #include "ceres/canonical_views_clustering.h" |
| 44 | #include "ceres/collections_port.h" |
| 45 | #include "ceres/detect_structure.h" |
| 46 | #include "ceres/graph.h" |
| 47 | #include "ceres/graph_algorithms.h" |
| 48 | #include "ceres/linear_solver.h" |
| 49 | #include "ceres/schur_eliminator.h" |
| 50 | #include "ceres/visibility.h" |
| 51 | #include "ceres/internal/scoped_ptr.h" |
| 52 | |
| 53 | namespace ceres { |
| 54 | namespace internal { |
| 55 | |
| 56 | // TODO(sameeragarwal): Currently these are magic weights for the |
| 57 | // preconditioner construction. Move these higher up into the Options |
| 58 | // struct and provide some guidelines for choosing them. |
| 59 | // |
| 60 | // This will require some more work on the clustering algorithm and |
| 61 | // possibly some more refactoring of the code. |
| 62 | static const double kSizePenaltyWeight = 3.0; |
| 63 | static const double kSimilarityPenaltyWeight = 0.0; |
| 64 | |
| 65 | #ifndef CERES_NO_SUITESPARSE |
| 66 | VisibilityBasedPreconditioner::VisibilityBasedPreconditioner( |
| 67 | const CompressedRowBlockStructure& bs, |
| 68 | const LinearSolver::Options& options) |
| 69 | : options_(options), |
| 70 | num_blocks_(0), |
| 71 | num_clusters_(0), |
| 72 | factor_(NULL) { |
| 73 | CHECK_GT(options_.num_eliminate_blocks, 0); |
| 74 | CHECK(options_.preconditioner_type == SCHUR_JACOBI || |
| 75 | options_.preconditioner_type == CLUSTER_JACOBI || |
| 76 | options_.preconditioner_type == CLUSTER_TRIDIAGONAL) |
| 77 | << "Unknown preconditioner type: " << options_.preconditioner_type; |
| 78 | num_blocks_ = bs.cols.size() - options_.num_eliminate_blocks; |
| 79 | CHECK_GT(num_blocks_, 0) |
| 80 | << "Jacobian should have atleast 1 f_block for " |
| 81 | << "visibility based preconditioning."; |
| 82 | |
| 83 | // Vector of camera block sizes |
| 84 | block_size_.resize(num_blocks_); |
| 85 | for (int i = 0; i < num_blocks_; ++i) { |
| 86 | block_size_[i] = bs.cols[i + options_.num_eliminate_blocks].size; |
| 87 | } |
| 88 | |
| 89 | const time_t start_time = time(NULL); |
| 90 | switch (options_.preconditioner_type) { |
| 91 | case SCHUR_JACOBI: |
| 92 | ComputeSchurJacobiSparsity(bs); |
| 93 | break; |
| 94 | case CLUSTER_JACOBI: |
| 95 | ComputeClusterJacobiSparsity(bs); |
| 96 | break; |
| 97 | case CLUSTER_TRIDIAGONAL: |
| 98 | ComputeClusterTridiagonalSparsity(bs); |
| 99 | break; |
| 100 | default: |
| 101 | LOG(FATAL) << "Unknown preconditioner type"; |
| 102 | } |
| 103 | const time_t structure_time = time(NULL); |
| 104 | InitStorage(bs); |
| 105 | const time_t storage_time = time(NULL); |
| 106 | InitEliminator(bs); |
| 107 | const time_t eliminator_time = time(NULL); |
| 108 | |
| 109 | // Allocate temporary storage for a vector used during |
| 110 | // RightMultiply. |
| 111 | tmp_rhs_ = CHECK_NOTNULL(ss_.CreateDenseVector(NULL, |
| 112 | m_->num_rows(), |
| 113 | m_->num_rows())); |
| 114 | const time_t init_time = time(NULL); |
| 115 | VLOG(2) << "init time: " |
| 116 | << init_time - start_time |
| 117 | << " structure time: " << structure_time - start_time |
| 118 | << " storage time:" << storage_time - structure_time |
| 119 | << " eliminator time: " << eliminator_time - storage_time; |
| 120 | } |
| 121 | |
| 122 | VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() { |
| 123 | if (factor_ != NULL) { |
| 124 | ss_.Free(factor_); |
| 125 | factor_ = NULL; |
| 126 | } |
| 127 | if (tmp_rhs_ != NULL) { |
| 128 | ss_.Free(tmp_rhs_); |
| 129 | tmp_rhs_ = NULL; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | // Determine the sparsity structure of the SCHUR_JACOBI |
| 134 | // preconditioner. SCHUR_JACOBI is an extreme case of a visibility |
| 135 | // based preconditioner where each camera block corresponds to a |
| 136 | // cluster and there is no interaction between clusters. |
| 137 | void VisibilityBasedPreconditioner::ComputeSchurJacobiSparsity( |
| 138 | const CompressedRowBlockStructure& bs) { |
| 139 | num_clusters_ = num_blocks_; |
| 140 | cluster_membership_.resize(num_blocks_); |
| 141 | cluster_pairs_.clear(); |
| 142 | |
| 143 | // Each camea block is a member of its own cluster and the only |
| 144 | // cluster pairs are the self edges (i,i). |
| 145 | for (int i = 0; i < num_clusters_; ++i) { |
| 146 | cluster_membership_[i] = i; |
| 147 | cluster_pairs_.insert(make_pair(i, i)); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | // Determine the sparsity structure of the CLUSTER_JACOBI |
| 152 | // preconditioner. It clusters cameras using their scene |
| 153 | // visibility. The clusters form the diagonal blocks of the |
| 154 | // preconditioner matrix. |
| 155 | void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity( |
| 156 | const CompressedRowBlockStructure& bs) { |
| 157 | vector<set<int> > visibility; |
| 158 | ComputeVisibility(bs, options_.num_eliminate_blocks, &visibility); |
| 159 | CHECK_EQ(num_blocks_, visibility.size()); |
| 160 | ClusterCameras(visibility); |
| 161 | cluster_pairs_.clear(); |
| 162 | for (int i = 0; i < num_clusters_; ++i) { |
| 163 | cluster_pairs_.insert(make_pair(i, i)); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | // Determine the sparsity structure of the CLUSTER_TRIDIAGONAL |
| 168 | // preconditioner. It clusters cameras using using the scene |
| 169 | // visibility and then finds the strongly interacting pairs of |
| 170 | // clusters by constructing another graph with the clusters as |
| 171 | // vertices and approximating it with a degree-2 maximum spanning |
| 172 | // forest. The set of edges in this forest are the cluster pairs. |
| 173 | void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity( |
| 174 | const CompressedRowBlockStructure& bs) { |
| 175 | vector<set<int> > visibility; |
| 176 | ComputeVisibility(bs, options_.num_eliminate_blocks, &visibility); |
| 177 | CHECK_EQ(num_blocks_, visibility.size()); |
| 178 | ClusterCameras(visibility); |
| 179 | |
| 180 | // Construct a weighted graph on the set of clusters, where the |
| 181 | // edges are the number of 3D points/e_blocks visible in both the |
| 182 | // clusters at the ends of the edge. Return an approximate degree-2 |
| 183 | // maximum spanning forest of this graph. |
| 184 | vector<set<int> > cluster_visibility; |
| 185 | ComputeClusterVisibility(visibility, &cluster_visibility); |
| 186 | scoped_ptr<Graph<int> > cluster_graph( |
| 187 | CHECK_NOTNULL(CreateClusterGraph(cluster_visibility))); |
| 188 | scoped_ptr<Graph<int> > forest( |
| 189 | CHECK_NOTNULL(Degree2MaximumSpanningForest(*cluster_graph))); |
| 190 | ForestToClusterPairs(*forest, &cluster_pairs_); |
| 191 | } |
| 192 | |
| 193 | // Allocate storage for the preconditioner matrix. |
| 194 | void VisibilityBasedPreconditioner::InitStorage( |
| 195 | const CompressedRowBlockStructure& bs) { |
| 196 | ComputeBlockPairsInPreconditioner(bs); |
| 197 | m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_)); |
| 198 | } |
| 199 | |
| 200 | // Call the canonical views algorithm and cluster the cameras based on |
| 201 | // their visibility sets. The visibility set of a camera is the set of |
| 202 | // e_blocks/3D points in the scene that are seen by it. |
| 203 | // |
| 204 | // The cluster_membership_ vector is updated to indicate cluster |
| 205 | // memberships for each camera block. |
| 206 | void VisibilityBasedPreconditioner::ClusterCameras( |
| 207 | const vector<set<int> >& visibility) { |
| 208 | scoped_ptr<Graph<int> > schur_complement_graph( |
| 209 | CHECK_NOTNULL(CreateSchurComplementGraph(visibility))); |
| 210 | |
| 211 | CanonicalViewsClusteringOptions options; |
| 212 | options.size_penalty_weight = kSizePenaltyWeight; |
| 213 | options.similarity_penalty_weight = kSimilarityPenaltyWeight; |
| 214 | |
| 215 | vector<int> centers; |
| 216 | HashMap<int, int> membership; |
| 217 | ComputeCanonicalViewsClustering(*schur_complement_graph, |
| 218 | options, |
| 219 | ¢ers, |
| 220 | &membership); |
| 221 | num_clusters_ = centers.size(); |
| 222 | CHECK_GT(num_clusters_, 0); |
| 223 | VLOG(2) << "num_clusters: " << num_clusters_; |
| 224 | FlattenMembershipMap(membership, &cluster_membership_); |
| 225 | } |
| 226 | |
| 227 | // Compute the block sparsity structure of the Schur complement |
| 228 | // matrix. For each pair of cameras contributing a non-zero cell to |
| 229 | // the schur complement, determine if that cell is present in the |
| 230 | // preconditioner or not. |
| 231 | // |
| 232 | // A pair of cameras contribute a cell to the preconditioner if they |
| 233 | // are part of the same cluster or if the the two clusters that they |
| 234 | // belong have an edge connecting them in the degree-2 maximum |
| 235 | // spanning forest. |
| 236 | // |
| 237 | // For example, a camera pair (i,j) where i belonges to cluster1 and |
| 238 | // j belongs to cluster2 (assume that cluster1 < cluster2). |
| 239 | // |
| 240 | // The cell corresponding to (i,j) is present in the preconditioner |
| 241 | // if cluster1 == cluster2 or the pair (cluster1, cluster2) were |
| 242 | // connected by an edge in the degree-2 maximum spanning forest. |
| 243 | // |
| 244 | // Since we have already expanded the forest into a set of camera |
| 245 | // pairs/edges, including self edges, the check can be reduced to |
| 246 | // checking membership of (cluster1, cluster2) in cluster_pairs_. |
| 247 | void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner( |
| 248 | const CompressedRowBlockStructure& bs) { |
| 249 | block_pairs_.clear(); |
| 250 | for (int i = 0; i < num_blocks_; ++i) { |
| 251 | block_pairs_.insert(make_pair(i, i)); |
| 252 | } |
| 253 | |
| 254 | int r = 0; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 255 | const int num_row_blocks = bs.rows.size(); |
| 256 | const int num_eliminate_blocks = options_.num_eliminate_blocks; |
| 257 | |
| 258 | // Iterate over each row of the matrix. The block structure of the |
| 259 | // matrix is assumed to be sorted in order of the e_blocks/point |
| 260 | // blocks. Thus all row blocks containing an e_block/point occur |
| 261 | // contiguously. Further, if present, an e_block is always the first |
| 262 | // parameter block in each row block. These structural assumptions |
| 263 | // are common to all Schur complement based solvers in Ceres. |
| 264 | // |
| 265 | // For each e_block/point block we identify the set of cameras |
| 266 | // seeing it. The cross product of this set with itself is the set |
| 267 | // of non-zero cells contibuted by this e_block. |
| 268 | // |
| 269 | // The time complexity of this is O(nm^2) where, n is the number of |
| 270 | // 3d points and m is the maximum number of cameras seeing any |
| 271 | // point, which for most scenes is a fairly small number. |
| 272 | while (r < num_row_blocks) { |
| 273 | int e_block_id = bs.rows[r].cells.front().block_id; |
| 274 | if (e_block_id >= num_eliminate_blocks) { |
| 275 | // Skip the rows whose first block is an f_block. |
| 276 | break; |
| 277 | } |
| 278 | |
| 279 | set<int> f_blocks; |
| 280 | for (; r < num_row_blocks; ++r) { |
| 281 | const CompressedRow& row = bs.rows[r]; |
| 282 | if (row.cells.front().block_id != e_block_id) { |
| 283 | break; |
| 284 | } |
| 285 | |
| 286 | // Iterate over the blocks in the row, ignoring the first block |
| 287 | // since it is the one to be eliminated and adding the rest to |
| 288 | // the list of f_blocks associated with this e_block. |
| 289 | for (int c = 1; c < row.cells.size(); ++c) { |
| 290 | const Cell& cell = row.cells[c]; |
| 291 | const int f_block_id = cell.block_id - num_eliminate_blocks; |
| 292 | CHECK_GE(f_block_id, 0); |
| 293 | f_blocks.insert(f_block_id); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | for (set<int>::const_iterator block1 = f_blocks.begin(); |
| 298 | block1 != f_blocks.end(); |
| 299 | ++block1) { |
| 300 | set<int>::const_iterator block2 = block1; |
| 301 | ++block2; |
| 302 | for (; block2 != f_blocks.end(); ++block2) { |
| 303 | if (IsBlockPairInPreconditioner(*block1, *block2)) { |
| 304 | block_pairs_.insert(make_pair(*block1, *block2)); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 305 | } |
| 306 | } |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | // The remaining rows which do not contain any e_blocks. |
| 311 | for (; r < num_row_blocks; ++r) { |
| 312 | const CompressedRow& row = bs.rows[r]; |
| 313 | CHECK_GE(row.cells.front().block_id, num_eliminate_blocks); |
| 314 | for (int i = 0; i < row.cells.size(); ++i) { |
| 315 | const int block1 = row.cells[i].block_id - num_eliminate_blocks; |
| 316 | for (int j = 0; j < row.cells.size(); ++j) { |
| 317 | const int block2 = row.cells[j].block_id - num_eliminate_blocks; |
| 318 | if (block1 <= block2) { |
| 319 | if (IsBlockPairInPreconditioner(block1, block2)) { |
| 320 | block_pairs_.insert(make_pair(block1, block2)); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 321 | } |
| 322 | } |
| 323 | } |
| 324 | } |
| 325 | } |
| 326 | |
Sameer Agarwal | eb22b8b | 2012-06-11 11:50:43 -0700 | [diff] [blame] | 327 | VLOG(1) << "Block pair stats: " << block_pairs_.size(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 328 | } |
| 329 | |
| 330 | // Initialize the SchurEliminator. |
| 331 | void VisibilityBasedPreconditioner::InitEliminator( |
| 332 | const CompressedRowBlockStructure& bs) { |
| 333 | LinearSolver::Options eliminator_options; |
| 334 | eliminator_options.num_eliminate_blocks = options_.num_eliminate_blocks; |
| 335 | eliminator_options.num_threads = options_.num_threads; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 336 | |
| 337 | DetectStructure(bs, options_.num_eliminate_blocks, |
| 338 | &eliminator_options.row_block_size, |
| 339 | &eliminator_options.e_block_size, |
| 340 | &eliminator_options.f_block_size); |
| 341 | |
| 342 | eliminator_.reset(SchurEliminatorBase::Create(eliminator_options)); |
| 343 | eliminator_->Init(options_.num_eliminate_blocks, &bs); |
| 344 | } |
| 345 | |
Sameer Agarwal | a9d8ef8 | 2012-05-14 02:28:05 -0700 | [diff] [blame] | 346 | // Update the values of the preconditioner matrix and factorize it. |
| 347 | bool VisibilityBasedPreconditioner::Update(const BlockSparseMatrixBase& A, |
| 348 | const double* D) { |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 349 | const time_t start_time = time(NULL); |
| 350 | const int num_rows = m_->num_rows(); |
| 351 | CHECK_GT(num_rows, 0); |
| 352 | |
| 353 | // We need a dummy rhs vector and a dummy b vector since the Schur |
| 354 | // eliminator combines the computation of the reduced camera matrix |
| 355 | // with the computation of the right hand side of that linear |
| 356 | // system. |
| 357 | // |
| 358 | // TODO(sameeragarwal): Perhaps its worth refactoring the |
| 359 | // SchurEliminator::Eliminate function to allow NULL for the rhs. As |
| 360 | // of now it does not seem to be worth the effort. |
| 361 | Vector rhs = Vector::Zero(m_->num_rows()); |
| 362 | Vector b = Vector::Zero(A.num_rows()); |
| 363 | |
| 364 | // Compute a subset of the entries of the Schur complement. |
| 365 | eliminator_->Eliminate(&A, b.data(), D, m_.get(), rhs.data()); |
| 366 | |
| 367 | // Try factorizing the matrix. For SCHUR_JACOBI and CLUSTER_JACOBI, |
| 368 | // this should always succeed modulo some numerical/conditioning |
| 369 | // problems. For CLUSTER_TRIDIAGONAL, in general the preconditioner |
| 370 | // matrix as constructed is not positive definite. However, we will |
| 371 | // go ahead and try factorizing it. If it works, great, otherwise we |
| 372 | // scale all the cells in the preconditioner corresponding to the |
| 373 | // edges in the degree-2 forest and that guarantees positive |
| 374 | // definiteness. The proof of this fact can be found in Lemma 1 in |
| 375 | // "Visibility Based Preconditioning for Bundle Adjustment". |
| 376 | // |
| 377 | // Doing the factorization like this saves us matrix mass when |
| 378 | // scaling is not needed, which is quite often in our experience. |
| 379 | bool status = Factorize(); |
| 380 | |
| 381 | // The scaling only affects the tri-diagonal case, since |
| 382 | // ScaleOffDiagonalBlocks only pays attenion to the cells that |
| 383 | // belong to the edges of the degree-2 forest. In the SCHUR_JACOBI |
| 384 | // and the CLUSTER_JACOBI cases, the preconditioner is guaranteed to |
| 385 | // be positive semidefinite. |
| 386 | if (!status && options_.preconditioner_type == CLUSTER_TRIDIAGONAL) { |
| 387 | VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal " |
| 388 | << "scaling"; |
| 389 | ScaleOffDiagonalCells(); |
| 390 | status = Factorize(); |
| 391 | } |
| 392 | |
| 393 | VLOG(2) << "Compute time: " << time(NULL) - start_time; |
| 394 | return status; |
| 395 | } |
| 396 | |
| 397 | // Consider the preconditioner matrix as meta-block matrix, whose |
| 398 | // blocks correspond to the clusters. Then cluster pairs corresponding |
| 399 | // to edges in the degree-2 forest are off diagonal entries of this |
| 400 | // matrix. Scaling these off-diagonal entries by 1/2 forces this |
| 401 | // matrix to be positive definite. |
| 402 | void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() { |
| 403 | for (set< pair<int, int> >::const_iterator it = block_pairs_.begin(); |
| 404 | it != block_pairs_.end(); |
| 405 | ++it) { |
| 406 | const int block1 = it->first; |
| 407 | const int block2 = it->second; |
| 408 | if (!IsBlockPairOffDiagonal(block1, block2)) { |
| 409 | continue; |
| 410 | } |
| 411 | |
| 412 | int r, c, row_stride, col_stride; |
| 413 | CellInfo* cell_info = m_->GetCell(block1, block2, |
| 414 | &r, &c, |
| 415 | &row_stride, &col_stride); |
| 416 | CHECK(cell_info != NULL) |
| 417 | << "Cell missing for block pair (" << block1 << "," << block2 << ")" |
| 418 | << " cluster pair (" << cluster_membership_[block1] |
| 419 | << " " << cluster_membership_[block2] << ")"; |
| 420 | |
| 421 | // Ah the magic of tri-diagonal matrices and diagonal |
| 422 | // dominance. See Lemma 1 in "Visibility Based Preconditioning |
| 423 | // For Bundle Adjustment". |
| 424 | MatrixRef m(cell_info->values, row_stride, col_stride); |
| 425 | m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5; |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | // Compute the sparse Cholesky factorization of the preconditioner |
| 430 | // matrix. |
| 431 | bool VisibilityBasedPreconditioner::Factorize() { |
| 432 | // Extract the TripletSparseMatrix that is used for actually storing |
| 433 | // S and convert it into a cholmod_sparse object. |
| 434 | cholmod_sparse* lhs = ss_.CreateSparseMatrix( |
| 435 | down_cast<BlockRandomAccessSparseMatrix*>( |
| 436 | m_.get())->mutable_matrix()); |
| 437 | |
| 438 | // The matrix is symmetric, and the upper triangular part of the |
| 439 | // matrix contains the values. |
| 440 | lhs->stype = 1; |
| 441 | |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 442 | // Symbolic factorization is computed if we don't already have one handy. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 443 | if (factor_ == NULL) { |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 444 | if (options_.use_block_amd) { |
| 445 | factor_ = ss_.BlockAnalyzeCholesky(lhs, block_size_, block_size_); |
| 446 | } else { |
| 447 | factor_ = ss_.AnalyzeCholesky(lhs); |
| 448 | } |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 449 | |
Sameer Agarwal | cb83b28 | 2012-06-06 22:26:09 -0700 | [diff] [blame] | 450 | if (VLOG_IS_ON(2)) { |
| 451 | cholmod_print_common("Symbolic Analysis", ss_.mutable_cc()); |
| 452 | } |
Sameer Agarwal | 7a3c43b | 2012-06-05 23:10:59 -0700 | [diff] [blame] | 453 | } |
| 454 | |
| 455 | CHECK_NOTNULL(factor_); |
| 456 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 457 | bool status = ss_.Cholesky(lhs, factor_); |
| 458 | ss_.Free(lhs); |
| 459 | return status; |
| 460 | } |
| 461 | |
| 462 | void VisibilityBasedPreconditioner::RightMultiply(const double* x, |
| 463 | double* y) const { |
| 464 | CHECK_NOTNULL(x); |
| 465 | CHECK_NOTNULL(y); |
| 466 | SuiteSparse* ss = const_cast<SuiteSparse*>(&ss_); |
| 467 | |
| 468 | const int num_rows = m_->num_rows(); |
| 469 | memcpy(CHECK_NOTNULL(tmp_rhs_)->x, x, m_->num_rows() * sizeof(*x)); |
| 470 | cholmod_dense* solution = CHECK_NOTNULL(ss->Solve(factor_, tmp_rhs_)); |
| 471 | memcpy(y, solution->x, sizeof(*y) * num_rows); |
| 472 | ss->Free(solution); |
| 473 | } |
| 474 | |
| 475 | int VisibilityBasedPreconditioner::num_rows() const { |
| 476 | return m_->num_rows(); |
| 477 | } |
| 478 | |
| 479 | // Classify camera/f_block pairs as in and out of the preconditioner, |
| 480 | // based on whether the cluster pair that they belong to is in the |
| 481 | // preconditioner or not. |
| 482 | bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner( |
| 483 | const int block1, |
| 484 | const int block2) const { |
| 485 | int cluster1 = cluster_membership_[block1]; |
| 486 | int cluster2 = cluster_membership_[block2]; |
| 487 | if (cluster1 > cluster2) { |
| 488 | std::swap(cluster1, cluster2); |
| 489 | } |
| 490 | return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0); |
| 491 | } |
| 492 | |
| 493 | bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal( |
| 494 | const int block1, |
| 495 | const int block2) const { |
| 496 | return (cluster_membership_[block1] != cluster_membership_[block2]); |
| 497 | } |
| 498 | |
| 499 | // Convert a graph into a list of edges that includes self edges for |
| 500 | // each vertex. |
| 501 | void VisibilityBasedPreconditioner::ForestToClusterPairs( |
| 502 | const Graph<int>& forest, |
| 503 | HashSet<pair<int, int> >* cluster_pairs) const { |
| 504 | CHECK_NOTNULL(cluster_pairs)->clear(); |
| 505 | const HashSet<int>& vertices = forest.vertices(); |
| 506 | CHECK_EQ(vertices.size(), num_clusters_); |
| 507 | |
| 508 | // Add all the cluster pairs corresponding to the edges in the |
| 509 | // forest. |
| 510 | for (HashSet<int>::const_iterator it1 = vertices.begin(); |
| 511 | it1 != vertices.end(); |
| 512 | ++it1) { |
| 513 | const int cluster1 = *it1; |
| 514 | cluster_pairs->insert(make_pair(cluster1, cluster1)); |
| 515 | const HashSet<int>& neighbors = forest.Neighbors(cluster1); |
| 516 | for (HashSet<int>::const_iterator it2 = neighbors.begin(); |
| 517 | it2 != neighbors.end(); |
| 518 | ++it2) { |
| 519 | const int cluster2 = *it2; |
| 520 | if (cluster1 < cluster2) { |
| 521 | cluster_pairs->insert(make_pair(cluster1, cluster2)); |
| 522 | } |
| 523 | } |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | // The visibilty set of a cluster is the union of the visibilty sets |
| 528 | // of all its cameras. In other words, the set of points visible to |
| 529 | // any camera in the cluster. |
| 530 | void VisibilityBasedPreconditioner::ComputeClusterVisibility( |
| 531 | const vector<set<int> >& visibility, |
| 532 | vector<set<int> >* cluster_visibility) const { |
| 533 | CHECK_NOTNULL(cluster_visibility)->resize(0); |
| 534 | cluster_visibility->resize(num_clusters_); |
| 535 | for (int i = 0; i < num_blocks_; ++i) { |
| 536 | const int cluster_id = cluster_membership_[i]; |
| 537 | (*cluster_visibility)[cluster_id].insert(visibility[i].begin(), |
| 538 | visibility[i].end()); |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | // Construct a graph whose vertices are the clusters, and the edge |
| 543 | // weights are the number of 3D points visible to cameras in both the |
| 544 | // vertices. |
| 545 | Graph<int>* VisibilityBasedPreconditioner::CreateClusterGraph( |
| 546 | const vector<set<int> >& cluster_visibility) const { |
| 547 | Graph<int>* cluster_graph = new Graph<int>; |
| 548 | |
| 549 | for (int i = 0; i < num_clusters_; ++i) { |
| 550 | cluster_graph->AddVertex(i); |
| 551 | } |
| 552 | |
| 553 | for (int i = 0; i < num_clusters_; ++i) { |
| 554 | const set<int>& cluster_i = cluster_visibility[i]; |
| 555 | for (int j = i+1; j < num_clusters_; ++j) { |
| 556 | vector<int> intersection; |
| 557 | const set<int>& cluster_j = cluster_visibility[j]; |
| 558 | set_intersection(cluster_i.begin(), cluster_i.end(), |
| 559 | cluster_j.begin(), cluster_j.end(), |
| 560 | back_inserter(intersection)); |
| 561 | |
| 562 | if (intersection.size() > 0) { |
| 563 | // Clusters interact strongly when they share a large number |
| 564 | // of 3D points. The degree-2 maximum spanning forest |
| 565 | // alorithm, iterates on the edges in decreasing order of |
| 566 | // their weight, which is the number of points shared by the |
| 567 | // two cameras that it connects. |
| 568 | cluster_graph->AddEdge(i, j, intersection.size()); |
| 569 | } |
| 570 | } |
| 571 | } |
| 572 | return cluster_graph; |
| 573 | } |
| 574 | |
| 575 | // Canonical views clustering returns a HashMap from vertices to |
| 576 | // cluster ids. Convert this into a flat array for quick lookup. It is |
| 577 | // possible that some of the vertices may not be associated with any |
| 578 | // cluster. In that case, randomly assign them to one of the clusters. |
| 579 | void VisibilityBasedPreconditioner::FlattenMembershipMap( |
| 580 | const HashMap<int, int>& membership_map, |
| 581 | vector<int>* membership_vector) const { |
| 582 | CHECK_NOTNULL(membership_vector)->resize(0); |
| 583 | membership_vector->resize(num_blocks_, -1); |
| 584 | // Iterate over the cluster membership map and update the |
| 585 | // cluster_membership_ vector assigning arbitrary cluster ids to |
| 586 | // the few cameras that have not been clustered. |
| 587 | for (HashMap<int, int>::const_iterator it = membership_map.begin(); |
| 588 | it != membership_map.end(); |
| 589 | ++it) { |
| 590 | const int camera_id = it->first; |
| 591 | int cluster_id = it->second; |
| 592 | |
| 593 | // If the view was not clustered, randomly assign it to one of the |
| 594 | // clusters. This preserves the mathematical correctness of the |
| 595 | // preconditioner. If there are too many views which are not |
| 596 | // clustered, it may lead to some quality degradation though. |
| 597 | // |
| 598 | // TODO(sameeragarwal): Check if a large number of views have not |
| 599 | // been clustered and deal with it? |
| 600 | if (cluster_id == -1) { |
| 601 | cluster_id = camera_id % num_clusters_; |
| 602 | } |
| 603 | |
| 604 | membership_vector->at(camera_id) = cluster_id; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | #endif // CERES_NO_SUITESPARSE |
| 609 | |
| 610 | } // namespace internal |
| 611 | } // namespace ceres |