Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include <cmath> |
| 32 | #include <limits> |
| 33 | #include <string> |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 34 | #include "ceres/internal/eigen.h" |
| 35 | #include "ceres/internal/port.h" |
| 36 | #include "ceres/jet.h" |
| 37 | #include "ceres/rotation.h" |
Sameer Agarwal | 0beab86 | 2012-08-13 15:12:01 -0700 | [diff] [blame] | 38 | #include "ceres/stringprintf.h" |
| 39 | #include "ceres/test_util.h" |
| 40 | #include "glog/logging.h" |
| 41 | #include "gmock/gmock.h" |
| 42 | #include "gtest/gtest.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 43 | |
| 44 | namespace ceres { |
| 45 | namespace internal { |
| 46 | |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 47 | const double kPi = 3.14159265358979323846; |
| 48 | const double kHalfSqrt2 = 0.707106781186547524401; |
| 49 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 50 | double RandDouble() { |
| 51 | double r = rand(); |
| 52 | return r / RAND_MAX; |
| 53 | } |
| 54 | |
| 55 | // A tolerance value for floating-point comparisons. |
| 56 | static double const kTolerance = numeric_limits<double>::epsilon() * 10; |
| 57 | |
Keir Mierle | 3e2c4ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 58 | // Looser tolerance used for numerically unstable conversions. |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 59 | static double const kLooseTolerance = 1e-9; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 60 | |
| 61 | // Use as: |
| 62 | // double quaternion[4]; |
| 63 | // EXPECT_THAT(quaternion, IsNormalizedQuaternion()); |
| 64 | MATCHER(IsNormalizedQuaternion, "") { |
| 65 | if (arg == NULL) { |
| 66 | *result_listener << "Null quaternion"; |
| 67 | return false; |
| 68 | } |
| 69 | |
| 70 | double norm2 = arg[0] * arg[0] + arg[1] * arg[1] + |
| 71 | arg[2] * arg[2] + arg[3] * arg[3]; |
| 72 | if (fabs(norm2 - 1.0) > kTolerance) { |
| 73 | *result_listener << "squared norm is " << norm2; |
| 74 | return false; |
| 75 | } |
| 76 | |
| 77 | return true; |
| 78 | } |
| 79 | |
| 80 | // Use as: |
| 81 | // double expected_quaternion[4]; |
| 82 | // double actual_quaternion[4]; |
| 83 | // EXPECT_THAT(actual_quaternion, IsNearQuaternion(expected_quaternion)); |
| 84 | MATCHER_P(IsNearQuaternion, expected, "") { |
| 85 | if (arg == NULL) { |
| 86 | *result_listener << "Null quaternion"; |
| 87 | return false; |
| 88 | } |
| 89 | |
Sameer Agarwal | 383c04f | 2012-08-17 10:14:04 -0700 | [diff] [blame] | 90 | // Quaternions are equivalent upto a sign change. So we will compare |
| 91 | // both signs before declaring failure. |
| 92 | bool near = true; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 93 | for (int i = 0; i < 4; i++) { |
| 94 | if (fabs(arg[i] - expected[i]) > kTolerance) { |
Sameer Agarwal | 383c04f | 2012-08-17 10:14:04 -0700 | [diff] [blame] | 95 | near = false; |
| 96 | break; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 97 | } |
| 98 | } |
| 99 | |
Sameer Agarwal | 383c04f | 2012-08-17 10:14:04 -0700 | [diff] [blame] | 100 | if (near) { |
| 101 | return true; |
| 102 | } |
| 103 | |
| 104 | near = true; |
| 105 | for (int i = 0; i < 4; i++) { |
| 106 | if (fabs(arg[i] + expected[i]) > kTolerance) { |
| 107 | near = false; |
| 108 | break; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | if (near) { |
| 113 | return true; |
| 114 | } |
| 115 | |
| 116 | *result_listener << "expected : " |
| 117 | << expected[0] << " " |
| 118 | << expected[1] << " " |
| 119 | << expected[2] << " " |
| 120 | << expected[3] << " " |
| 121 | << "actual : " |
| 122 | << arg[0] << " " |
| 123 | << arg[1] << " " |
| 124 | << arg[2] << " " |
| 125 | << arg[3]; |
| 126 | return false; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 127 | } |
| 128 | |
| 129 | // Use as: |
| 130 | // double expected_axis_angle[4]; |
| 131 | // double actual_axis_angle[4]; |
| 132 | // EXPECT_THAT(actual_axis_angle, IsNearAngleAxis(expected_axis_angle)); |
| 133 | MATCHER_P(IsNearAngleAxis, expected, "") { |
| 134 | if (arg == NULL) { |
| 135 | *result_listener << "Null axis/angle"; |
| 136 | return false; |
| 137 | } |
| 138 | |
| 139 | for (int i = 0; i < 3; i++) { |
| 140 | if (fabs(arg[i] - expected[i]) > kTolerance) { |
| 141 | *result_listener << "component " << i << " should be " << expected[i]; |
| 142 | return false; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | return true; |
| 147 | } |
| 148 | |
| 149 | // Use as: |
| 150 | // double matrix[9]; |
| 151 | // EXPECT_THAT(matrix, IsOrthonormal()); |
| 152 | MATCHER(IsOrthonormal, "") { |
| 153 | if (arg == NULL) { |
| 154 | *result_listener << "Null matrix"; |
| 155 | return false; |
| 156 | } |
| 157 | |
| 158 | for (int c1 = 0; c1 < 3; c1++) { |
| 159 | for (int c2 = 0; c2 < 3; c2++) { |
| 160 | double v = 0; |
| 161 | for (int i = 0; i < 3; i++) { |
| 162 | v += arg[i + 3 * c1] * arg[i + 3 * c2]; |
| 163 | } |
| 164 | double expected = (c1 == c2) ? 1 : 0; |
| 165 | if (fabs(expected - v) > kTolerance) { |
| 166 | *result_listener << "Columns " << c1 << " and " << c2 |
| 167 | << " should have dot product " << expected |
| 168 | << " but have " << v; |
| 169 | return false; |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | return true; |
| 175 | } |
| 176 | |
| 177 | // Use as: |
| 178 | // double matrix1[9]; |
| 179 | // double matrix2[9]; |
| 180 | // EXPECT_THAT(matrix1, IsNear3x3Matrix(matrix2)); |
| 181 | MATCHER_P(IsNear3x3Matrix, expected, "") { |
| 182 | if (arg == NULL) { |
| 183 | *result_listener << "Null matrix"; |
| 184 | return false; |
| 185 | } |
| 186 | |
| 187 | for (int i = 0; i < 9; i++) { |
| 188 | if (fabs(arg[i] - expected[i]) > kTolerance) { |
| 189 | *result_listener << "component " << i << " should be " << expected[i]; |
| 190 | return false; |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | return true; |
| 195 | } |
| 196 | |
| 197 | // Transforms a zero axis/angle to a quaternion. |
| 198 | TEST(Rotation, ZeroAngleAxisToQuaternion) { |
| 199 | double axis_angle[3] = { 0, 0, 0 }; |
| 200 | double quaternion[4]; |
| 201 | double expected[4] = { 1, 0, 0, 0 }; |
| 202 | AngleAxisToQuaternion(axis_angle, quaternion); |
| 203 | EXPECT_THAT(quaternion, IsNormalizedQuaternion()); |
| 204 | EXPECT_THAT(quaternion, IsNearQuaternion(expected)); |
| 205 | } |
| 206 | |
| 207 | // Test that exact conversion works for small angles. |
| 208 | TEST(Rotation, SmallAngleAxisToQuaternion) { |
| 209 | // Small, finite value to test. |
| 210 | double theta = 1.0e-2; |
| 211 | double axis_angle[3] = { theta, 0, 0 }; |
| 212 | double quaternion[4]; |
| 213 | double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 }; |
| 214 | AngleAxisToQuaternion(axis_angle, quaternion); |
| 215 | EXPECT_THAT(quaternion, IsNormalizedQuaternion()); |
| 216 | EXPECT_THAT(quaternion, IsNearQuaternion(expected)); |
| 217 | } |
| 218 | |
| 219 | // Test that approximate conversion works for very small angles. |
| 220 | TEST(Rotation, TinyAngleAxisToQuaternion) { |
| 221 | // Very small value that could potentially cause underflow. |
| 222 | double theta = pow(numeric_limits<double>::min(), 0.75); |
| 223 | double axis_angle[3] = { theta, 0, 0 }; |
| 224 | double quaternion[4]; |
| 225 | double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 }; |
| 226 | AngleAxisToQuaternion(axis_angle, quaternion); |
| 227 | EXPECT_THAT(quaternion, IsNormalizedQuaternion()); |
| 228 | EXPECT_THAT(quaternion, IsNearQuaternion(expected)); |
| 229 | } |
| 230 | |
| 231 | // Transforms a rotation by pi/2 around X to a quaternion. |
| 232 | TEST(Rotation, XRotationToQuaternion) { |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 233 | double axis_angle[3] = { kPi / 2, 0, 0 }; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 234 | double quaternion[4]; |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 235 | double expected[4] = { kHalfSqrt2, kHalfSqrt2, 0, 0 }; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 236 | AngleAxisToQuaternion(axis_angle, quaternion); |
| 237 | EXPECT_THAT(quaternion, IsNormalizedQuaternion()); |
| 238 | EXPECT_THAT(quaternion, IsNearQuaternion(expected)); |
| 239 | } |
| 240 | |
| 241 | // Transforms a unit quaternion to an axis angle. |
| 242 | TEST(Rotation, UnitQuaternionToAngleAxis) { |
| 243 | double quaternion[4] = { 1, 0, 0, 0 }; |
| 244 | double axis_angle[3]; |
| 245 | double expected[3] = { 0, 0, 0 }; |
| 246 | QuaternionToAngleAxis(quaternion, axis_angle); |
| 247 | EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); |
| 248 | } |
| 249 | |
| 250 | // Transforms a quaternion that rotates by pi about the Y axis to an axis angle. |
| 251 | TEST(Rotation, YRotationQuaternionToAngleAxis) { |
| 252 | double quaternion[4] = { 0, 0, 1, 0 }; |
| 253 | double axis_angle[3]; |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 254 | double expected[3] = { 0, kPi, 0 }; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 255 | QuaternionToAngleAxis(quaternion, axis_angle); |
| 256 | EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); |
| 257 | } |
| 258 | |
| 259 | // Transforms a quaternion that rotates by pi/3 about the Z axis to an axis |
| 260 | // angle. |
| 261 | TEST(Rotation, ZRotationQuaternionToAngleAxis) { |
| 262 | double quaternion[4] = { sqrt(3) / 2, 0, 0, 0.5 }; |
| 263 | double axis_angle[3]; |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 264 | double expected[3] = { 0, 0, kPi / 3 }; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 265 | QuaternionToAngleAxis(quaternion, axis_angle); |
| 266 | EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); |
| 267 | } |
| 268 | |
| 269 | // Test that exact conversion works for small angles. |
| 270 | TEST(Rotation, SmallQuaternionToAngleAxis) { |
| 271 | // Small, finite value to test. |
| 272 | double theta = 1.0e-2; |
| 273 | double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 }; |
| 274 | double axis_angle[3]; |
| 275 | double expected[3] = { theta, 0, 0 }; |
| 276 | QuaternionToAngleAxis(quaternion, axis_angle); |
| 277 | EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); |
| 278 | } |
| 279 | |
| 280 | // Test that approximate conversion works for very small angles. |
| 281 | TEST(Rotation, TinyQuaternionToAngleAxis) { |
| 282 | // Very small value that could potentially cause underflow. |
| 283 | double theta = pow(numeric_limits<double>::min(), 0.75); |
| 284 | double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 }; |
| 285 | double axis_angle[3]; |
| 286 | double expected[3] = { theta, 0, 0 }; |
| 287 | QuaternionToAngleAxis(quaternion, axis_angle); |
| 288 | EXPECT_THAT(axis_angle, IsNearAngleAxis(expected)); |
| 289 | } |
| 290 | |
Sameer Agarwal | 383c04f | 2012-08-17 10:14:04 -0700 | [diff] [blame] | 291 | TEST(Rotation, QuaternionToAngleAxisAngleIsLessThanPi) { |
| 292 | double quaternion[4]; |
| 293 | double angle_axis[3]; |
| 294 | |
| 295 | const double half_theta = 0.75 * kPi; |
| 296 | |
| 297 | quaternion[0] = cos(half_theta); |
| 298 | quaternion[1] = 1.0 * sin(half_theta); |
| 299 | quaternion[2] = 0.0; |
| 300 | quaternion[3] = 0.0; |
| 301 | QuaternionToAngleAxis(quaternion, angle_axis); |
| 302 | const double angle = sqrt(angle_axis[0] * angle_axis[0] + |
| 303 | angle_axis[1] * angle_axis[1] + |
| 304 | angle_axis[2] * angle_axis[2]); |
| 305 | EXPECT_LE(angle, kPi); |
| 306 | } |
| 307 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 308 | static const int kNumTrials = 10000; |
| 309 | |
| 310 | // Takes a bunch of random axis/angle values, converts them to quaternions, |
| 311 | // and back again. |
| 312 | TEST(Rotation, AngleAxisToQuaterionAndBack) { |
| 313 | srand(5); |
| 314 | for (int i = 0; i < kNumTrials; i++) { |
| 315 | double axis_angle[3]; |
| 316 | // Make an axis by choosing three random numbers in [-1, 1) and |
| 317 | // normalizing. |
| 318 | double norm = 0; |
| 319 | for (int i = 0; i < 3; i++) { |
| 320 | axis_angle[i] = RandDouble() * 2 - 1; |
| 321 | norm += axis_angle[i] * axis_angle[i]; |
| 322 | } |
| 323 | norm = sqrt(norm); |
| 324 | |
| 325 | // Angle in [-pi, pi). |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 326 | double theta = kPi * 2 * RandDouble() - kPi; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 327 | for (int i = 0; i < 3; i++) { |
| 328 | axis_angle[i] = axis_angle[i] * theta / norm; |
| 329 | } |
| 330 | |
| 331 | double quaternion[4]; |
| 332 | double round_trip[3]; |
| 333 | // We use ASSERTs here because if there's one failure, there are |
| 334 | // probably many and spewing a million failures doesn't make anyone's |
| 335 | // day. |
| 336 | AngleAxisToQuaternion(axis_angle, quaternion); |
| 337 | ASSERT_THAT(quaternion, IsNormalizedQuaternion()); |
| 338 | QuaternionToAngleAxis(quaternion, round_trip); |
| 339 | ASSERT_THAT(round_trip, IsNearAngleAxis(axis_angle)); |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | // Takes a bunch of random quaternions, converts them to axis/angle, |
| 344 | // and back again. |
| 345 | TEST(Rotation, QuaterionToAngleAxisAndBack) { |
| 346 | srand(5); |
| 347 | for (int i = 0; i < kNumTrials; i++) { |
| 348 | double quaternion[4]; |
| 349 | // Choose four random numbers in [-1, 1) and normalize. |
| 350 | double norm = 0; |
| 351 | for (int i = 0; i < 4; i++) { |
| 352 | quaternion[i] = RandDouble() * 2 - 1; |
| 353 | norm += quaternion[i] * quaternion[i]; |
| 354 | } |
| 355 | norm = sqrt(norm); |
| 356 | |
| 357 | for (int i = 0; i < 4; i++) { |
| 358 | quaternion[i] = quaternion[i] / norm; |
| 359 | } |
| 360 | |
| 361 | double axis_angle[3]; |
| 362 | double round_trip[4]; |
| 363 | QuaternionToAngleAxis(quaternion, axis_angle); |
| 364 | AngleAxisToQuaternion(axis_angle, round_trip); |
| 365 | ASSERT_THAT(round_trip, IsNormalizedQuaternion()); |
| 366 | ASSERT_THAT(round_trip, IsNearQuaternion(quaternion)); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | // Transforms a zero axis/angle to a rotation matrix. |
| 371 | TEST(Rotation, ZeroAngleAxisToRotationMatrix) { |
| 372 | double axis_angle[3] = { 0, 0, 0 }; |
| 373 | double matrix[9]; |
| 374 | double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 }; |
| 375 | AngleAxisToRotationMatrix(axis_angle, matrix); |
| 376 | EXPECT_THAT(matrix, IsOrthonormal()); |
| 377 | EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); |
| 378 | } |
| 379 | |
| 380 | TEST(Rotation, NearZeroAngleAxisToRotationMatrix) { |
| 381 | double axis_angle[3] = { 1e-24, 2e-24, 3e-24 }; |
| 382 | double matrix[9]; |
| 383 | double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 }; |
| 384 | AngleAxisToRotationMatrix(axis_angle, matrix); |
| 385 | EXPECT_THAT(matrix, IsOrthonormal()); |
| 386 | EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); |
| 387 | } |
| 388 | |
| 389 | // Transforms a rotation by pi/2 around X to a rotation matrix and back. |
| 390 | TEST(Rotation, XRotationToRotationMatrix) { |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 391 | double axis_angle[3] = { kPi / 2, 0, 0 }; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 392 | double matrix[9]; |
| 393 | // The rotation matrices are stored column-major. |
| 394 | double expected[9] = { 1, 0, 0, 0, 0, 1, 0, -1, 0 }; |
| 395 | AngleAxisToRotationMatrix(axis_angle, matrix); |
| 396 | EXPECT_THAT(matrix, IsOrthonormal()); |
| 397 | EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); |
| 398 | double round_trip[3]; |
| 399 | RotationMatrixToAngleAxis(matrix, round_trip); |
| 400 | EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle)); |
| 401 | } |
| 402 | |
| 403 | // Transforms an axis angle that rotates by pi about the Y axis to a |
| 404 | // rotation matrix and back. |
| 405 | TEST(Rotation, YRotationToRotationMatrix) { |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 406 | double axis_angle[3] = { 0, kPi, 0 }; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 407 | double matrix[9]; |
| 408 | double expected[9] = { -1, 0, 0, 0, 1, 0, 0, 0, -1 }; |
| 409 | AngleAxisToRotationMatrix(axis_angle, matrix); |
| 410 | EXPECT_THAT(matrix, IsOrthonormal()); |
| 411 | EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); |
| 412 | |
| 413 | double round_trip[3]; |
| 414 | RotationMatrixToAngleAxis(matrix, round_trip); |
| 415 | EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle)); |
| 416 | } |
| 417 | |
| 418 | TEST(Rotation, NearPiAngleAxisRoundTrip) { |
| 419 | double in_axis_angle[3]; |
| 420 | double matrix[9]; |
| 421 | double out_axis_angle[3]; |
| 422 | |
| 423 | srand(5); |
| 424 | for (int i = 0; i < kNumTrials; i++) { |
| 425 | // Make an axis by choosing three random numbers in [-1, 1) and |
| 426 | // normalizing. |
| 427 | double norm = 0; |
| 428 | for (int i = 0; i < 3; i++) { |
| 429 | in_axis_angle[i] = RandDouble() * 2 - 1; |
| 430 | norm += in_axis_angle[i] * in_axis_angle[i]; |
| 431 | } |
| 432 | norm = sqrt(norm); |
| 433 | |
| 434 | // Angle in [pi - kMaxSmallAngle, pi). |
| 435 | const double kMaxSmallAngle = 1e-2; |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 436 | double theta = kPi - kMaxSmallAngle * RandDouble(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 437 | |
| 438 | for (int i = 0; i < 3; i++) { |
| 439 | in_axis_angle[i] *= (theta / norm); |
| 440 | } |
| 441 | AngleAxisToRotationMatrix(in_axis_angle, matrix); |
| 442 | RotationMatrixToAngleAxis(matrix, out_axis_angle); |
| 443 | |
| 444 | for (int i = 0; i < 3; ++i) { |
| 445 | EXPECT_NEAR(out_axis_angle[i], in_axis_angle[i], kLooseTolerance); |
| 446 | } |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | TEST(Rotation, AtPiAngleAxisRoundTrip) { |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 451 | // A rotation of kPi about the X axis; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 452 | static const double kMatrix[3][3] = { |
| 453 | {1.0, 0.0, 0.0}, |
| 454 | {0.0, -1.0, 0.0}, |
| 455 | {0.0, 0.0, -1.0} |
| 456 | }; |
| 457 | |
| 458 | double in_matrix[9]; |
| 459 | // Fill it from kMatrix in col-major order. |
| 460 | for (int j = 0, k = 0; j < 3; ++j) { |
| 461 | for (int i = 0; i < 3; ++i, ++k) { |
| 462 | in_matrix[k] = kMatrix[i][j]; |
| 463 | } |
| 464 | } |
| 465 | |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 466 | const double expected_axis_angle[3] = { kPi, 0, 0 }; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 467 | |
| 468 | double out_matrix[9]; |
| 469 | double axis_angle[3]; |
| 470 | RotationMatrixToAngleAxis(in_matrix, axis_angle); |
| 471 | AngleAxisToRotationMatrix(axis_angle, out_matrix); |
| 472 | |
| 473 | LOG(INFO) << "AngleAxis = " << axis_angle[0] << " " << axis_angle[1] |
| 474 | << " " << axis_angle[2]; |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 475 | LOG(INFO) << "Expected AngleAxis = " << kPi << " 0 0"; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 476 | double out_rowmajor[3][3]; |
| 477 | for (int j = 0, k = 0; j < 3; ++j) { |
| 478 | for (int i = 0; i < 3; ++i, ++k) { |
| 479 | out_rowmajor[i][j] = out_matrix[k]; |
| 480 | } |
| 481 | } |
| 482 | LOG(INFO) << "Rotation:"; |
| 483 | LOG(INFO) << "EXPECTED | ACTUAL"; |
| 484 | for (int i = 0; i < 3; ++i) { |
| 485 | string line; |
| 486 | for (int j = 0; j < 3; ++j) { |
| 487 | StringAppendF(&line, "%g ", kMatrix[i][j]); |
| 488 | } |
| 489 | line += " | "; |
| 490 | for (int j = 0; j < 3; ++j) { |
| 491 | StringAppendF(&line, "%g ", out_rowmajor[i][j]); |
| 492 | } |
| 493 | LOG(INFO) << line; |
| 494 | } |
| 495 | |
| 496 | EXPECT_THAT(axis_angle, IsNearAngleAxis(expected_axis_angle)); |
| 497 | EXPECT_THAT(out_matrix, IsNear3x3Matrix(in_matrix)); |
| 498 | } |
| 499 | |
| 500 | // Transforms an axis angle that rotates by pi/3 about the Z axis to a |
| 501 | // rotation matrix. |
| 502 | TEST(Rotation, ZRotationToRotationMatrix) { |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 503 | double axis_angle[3] = { 0, 0, kPi / 3 }; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 504 | double matrix[9]; |
| 505 | // This is laid-out row-major on the screen but is actually stored |
| 506 | // column-major. |
| 507 | double expected[9] = { 0.5, sqrt(3) / 2, 0, // Column 1 |
| 508 | -sqrt(3) / 2, 0.5, 0, // Column 2 |
| 509 | 0, 0, 1 }; // Column 3 |
| 510 | AngleAxisToRotationMatrix(axis_angle, matrix); |
| 511 | EXPECT_THAT(matrix, IsOrthonormal()); |
| 512 | EXPECT_THAT(matrix, IsNear3x3Matrix(expected)); |
| 513 | double round_trip[3]; |
| 514 | RotationMatrixToAngleAxis(matrix, round_trip); |
| 515 | EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle)); |
| 516 | } |
| 517 | |
| 518 | // Takes a bunch of random axis/angle values, converts them to rotation |
| 519 | // matrices, and back again. |
| 520 | TEST(Rotation, AngleAxisToRotationMatrixAndBack) { |
| 521 | srand(5); |
| 522 | for (int i = 0; i < kNumTrials; i++) { |
| 523 | double axis_angle[3]; |
| 524 | // Make an axis by choosing three random numbers in [-1, 1) and |
| 525 | // normalizing. |
| 526 | double norm = 0; |
| 527 | for (int i = 0; i < 3; i++) { |
| 528 | axis_angle[i] = RandDouble() * 2 - 1; |
| 529 | norm += axis_angle[i] * axis_angle[i]; |
| 530 | } |
| 531 | norm = sqrt(norm); |
| 532 | |
| 533 | // Angle in [-pi, pi). |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 534 | double theta = kPi * 2 * RandDouble() - kPi; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 535 | for (int i = 0; i < 3; i++) { |
| 536 | axis_angle[i] = axis_angle[i] * theta / norm; |
| 537 | } |
| 538 | |
| 539 | double matrix[9]; |
| 540 | double round_trip[3]; |
| 541 | AngleAxisToRotationMatrix(axis_angle, matrix); |
| 542 | ASSERT_THAT(matrix, IsOrthonormal()); |
| 543 | RotationMatrixToAngleAxis(matrix, round_trip); |
| 544 | |
| 545 | for (int i = 0; i < 3; ++i) { |
| 546 | EXPECT_NEAR(round_trip[i], axis_angle[i], kLooseTolerance); |
| 547 | } |
| 548 | } |
| 549 | } |
| 550 | |
Sameer Agarwal | 21d6a99 | 2013-10-25 10:20:24 -0700 | [diff] [blame] | 551 | // Takes a bunch of random axis/angle values near zero, converts them |
| 552 | // to rotation matrices, and back again. |
| 553 | TEST(Rotation, AngleAxisToRotationMatrixAndBackNearZero) { |
| 554 | srand(5); |
| 555 | for (int i = 0; i < kNumTrials; i++) { |
| 556 | double axis_angle[3]; |
| 557 | // Make an axis by choosing three random numbers in [-1, 1) and |
| 558 | // normalizing. |
| 559 | double norm = 0; |
| 560 | for (int i = 0; i < 3; i++) { |
| 561 | axis_angle[i] = RandDouble() * 2 - 1; |
| 562 | norm += axis_angle[i] * axis_angle[i]; |
| 563 | } |
| 564 | norm = sqrt(norm); |
| 565 | |
| 566 | // Tiny theta. |
| 567 | double theta = 1e-16 * (kPi * 2 * RandDouble() - kPi); |
| 568 | for (int i = 0; i < 3; i++) { |
| 569 | axis_angle[i] = axis_angle[i] * theta / norm; |
| 570 | } |
| 571 | |
| 572 | double matrix[9]; |
| 573 | double round_trip[3]; |
| 574 | AngleAxisToRotationMatrix(axis_angle, matrix); |
| 575 | ASSERT_THAT(matrix, IsOrthonormal()); |
| 576 | RotationMatrixToAngleAxis(matrix, round_trip); |
| 577 | |
| 578 | for (int i = 0; i < 3; ++i) { |
Sameer Agarwal | dcee120 | 2013-12-07 21:48:56 -0800 | [diff] [blame] | 579 | EXPECT_NEAR(round_trip[i], axis_angle[i], |
| 580 | std::numeric_limits<double>::epsilon()); |
Sameer Agarwal | 21d6a99 | 2013-10-25 10:20:24 -0700 | [diff] [blame] | 581 | } |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 586 | // Transposes a 3x3 matrix. |
| 587 | static void Transpose3x3(double m[9]) { |
| 588 | std::swap(m[1], m[3]); |
| 589 | std::swap(m[2], m[6]); |
| 590 | std::swap(m[5], m[7]); |
| 591 | } |
| 592 | |
| 593 | // Convert Euler angles from radians to degrees. |
| 594 | static void ToDegrees(double ea[3]) { |
| 595 | for (int i = 0; i < 3; ++i) |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 596 | ea[i] *= 180.0 / kPi; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 597 | } |
| 598 | |
| 599 | // Compare the 3x3 rotation matrices produced by the axis-angle |
| 600 | // rotation 'aa' and the Euler angle rotation 'ea' (in radians). |
| 601 | static void CompareEulerToAngleAxis(double aa[3], double ea[3]) { |
| 602 | double aa_matrix[9]; |
| 603 | AngleAxisToRotationMatrix(aa, aa_matrix); |
| 604 | Transpose3x3(aa_matrix); // Column to row major order. |
| 605 | |
| 606 | double ea_matrix[9]; |
| 607 | ToDegrees(ea); // Radians to degrees. |
| 608 | const int kRowStride = 3; |
| 609 | EulerAnglesToRotationMatrix(ea, kRowStride, ea_matrix); |
| 610 | |
| 611 | EXPECT_THAT(aa_matrix, IsOrthonormal()); |
| 612 | EXPECT_THAT(ea_matrix, IsOrthonormal()); |
| 613 | EXPECT_THAT(ea_matrix, IsNear3x3Matrix(aa_matrix)); |
| 614 | } |
| 615 | |
| 616 | // Test with rotation axis along the x/y/z axes. |
| 617 | // Also test zero rotation. |
| 618 | TEST(EulerAnglesToRotationMatrix, OnAxis) { |
| 619 | int n_tests = 0; |
| 620 | for (double x = -1.0; x <= 1.0; x += 1.0) { |
| 621 | for (double y = -1.0; y <= 1.0; y += 1.0) { |
| 622 | for (double z = -1.0; z <= 1.0; z += 1.0) { |
| 623 | if ((x != 0) + (y != 0) + (z != 0) > 1) |
| 624 | continue; |
| 625 | double axis_angle[3] = {x, y, z}; |
| 626 | double euler_angles[3] = {x, y, z}; |
| 627 | CompareEulerToAngleAxis(axis_angle, euler_angles); |
| 628 | ++n_tests; |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | CHECK_EQ(7, n_tests); |
| 633 | } |
| 634 | |
| 635 | // Test that a random rotation produces an orthonormal rotation |
| 636 | // matrix. |
| 637 | TEST(EulerAnglesToRotationMatrix, IsOrthonormal) { |
| 638 | srand(5); |
| 639 | for (int trial = 0; trial < kNumTrials; ++trial) { |
| 640 | double ea[3]; |
| 641 | for (int i = 0; i < 3; ++i) |
| 642 | ea[i] = 360.0 * (RandDouble() * 2.0 - 1.0); |
| 643 | double ea_matrix[9]; |
| 644 | ToDegrees(ea); // Radians to degrees. |
| 645 | EulerAnglesToRotationMatrix(ea, 3, ea_matrix); |
| 646 | EXPECT_THAT(ea_matrix, IsOrthonormal()); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | // Tests using Jets for specific behavior involving auto differentiation |
| 651 | // near singularity points. |
| 652 | |
| 653 | typedef Jet<double, 3> J3; |
| 654 | typedef Jet<double, 4> J4; |
| 655 | |
| 656 | J3 MakeJ3(double a, double v0, double v1, double v2) { |
| 657 | J3 j; |
| 658 | j.a = a; |
| 659 | j.v[0] = v0; |
| 660 | j.v[1] = v1; |
| 661 | j.v[2] = v2; |
| 662 | return j; |
| 663 | } |
| 664 | |
| 665 | J4 MakeJ4(double a, double v0, double v1, double v2, double v3) { |
| 666 | J4 j; |
| 667 | j.a = a; |
| 668 | j.v[0] = v0; |
| 669 | j.v[1] = v1; |
| 670 | j.v[2] = v2; |
| 671 | j.v[3] = v3; |
| 672 | return j; |
| 673 | } |
| 674 | |
| 675 | |
| 676 | bool IsClose(double x, double y) { |
Keir Mierle | 58ede27 | 2012-06-24 17:23:57 -0700 | [diff] [blame] | 677 | EXPECT_FALSE(IsNaN(x)); |
| 678 | EXPECT_FALSE(IsNaN(y)); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 679 | double absdiff = fabs(x - y); |
| 680 | if (x == 0 || y == 0) { |
| 681 | return absdiff <= kTolerance; |
| 682 | } |
| 683 | double reldiff = absdiff / max(fabs(x), fabs(y)); |
| 684 | return reldiff <= kTolerance; |
| 685 | } |
| 686 | |
| 687 | template <int N> |
| 688 | bool IsClose(const Jet<double, N> &x, const Jet<double, N> &y) { |
| 689 | if (IsClose(x.a, y.a)) { |
| 690 | for (int i = 0; i < N; i++) { |
| 691 | if (!IsClose(x.v[i], y.v[i])) { |
| 692 | return false; |
| 693 | } |
| 694 | } |
| 695 | } |
| 696 | return true; |
| 697 | } |
| 698 | |
| 699 | template <int M, int N> |
| 700 | void ExpectJetArraysClose(const Jet<double, N> *x, const Jet<double, N> *y) { |
| 701 | for (int i = 0; i < M; i++) { |
| 702 | if (!IsClose(x[i], y[i])) { |
| 703 | LOG(ERROR) << "Jet " << i << "/" << M << " not equal"; |
| 704 | LOG(ERROR) << "x[" << i << "]: " << x[i]; |
| 705 | LOG(ERROR) << "y[" << i << "]: " << y[i]; |
| 706 | Jet<double, N> d, zero; |
| 707 | d.a = y[i].a - x[i].a; |
| 708 | for (int j = 0; j < N; j++) { |
| 709 | d.v[j] = y[i].v[j] - x[i].v[j]; |
| 710 | } |
| 711 | LOG(ERROR) << "diff: " << d; |
| 712 | EXPECT_TRUE(IsClose(x[i], y[i])); |
| 713 | } |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | // Log-10 of a value well below machine precision. |
| 718 | static const int kSmallTinyCutoff = |
| 719 | static_cast<int>(2 * log(numeric_limits<double>::epsilon())/log(10.0)); |
| 720 | |
| 721 | // Log-10 of a value just below values representable by double. |
| 722 | static const int kTinyZeroLimit = |
| 723 | static_cast<int>(1 + log(numeric_limits<double>::min())/log(10.0)); |
| 724 | |
| 725 | // Test that exact conversion works for small angles when jets are used. |
| 726 | TEST(Rotation, SmallAngleAxisToQuaternionForJets) { |
| 727 | // Examine small x rotations that are still large enough |
| 728 | // to be well within the range represented by doubles. |
| 729 | for (int i = -2; i >= kSmallTinyCutoff; i--) { |
| 730 | double theta = pow(10.0, i); |
| 731 | J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) }; |
| 732 | J3 quaternion[4]; |
| 733 | J3 expected[4] = { |
| 734 | MakeJ3(cos(theta/2), -sin(theta/2)/2, 0, 0), |
| 735 | MakeJ3(sin(theta/2), cos(theta/2)/2, 0, 0), |
| 736 | MakeJ3(0, 0, sin(theta/2)/theta, 0), |
| 737 | MakeJ3(0, 0, 0, sin(theta/2)/theta), |
| 738 | }; |
| 739 | AngleAxisToQuaternion(axis_angle, quaternion); |
| 740 | ExpectJetArraysClose<4, 3>(quaternion, expected); |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | |
| 745 | // Test that conversion works for very small angles when jets are used. |
| 746 | TEST(Rotation, TinyAngleAxisToQuaternionForJets) { |
| 747 | // Examine tiny x rotations that extend all the way to where |
| 748 | // underflow occurs. |
| 749 | for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) { |
| 750 | double theta = pow(10.0, i); |
| 751 | J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) }; |
| 752 | J3 quaternion[4]; |
| 753 | // To avoid loss of precision in the test itself, |
| 754 | // a finite expansion is used here, which will |
| 755 | // be exact up to machine precision for the test values used. |
| 756 | J3 expected[4] = { |
| 757 | MakeJ3(1.0, 0, 0, 0), |
| 758 | MakeJ3(0, 0.5, 0, 0), |
| 759 | MakeJ3(0, 0, 0.5, 0), |
| 760 | MakeJ3(0, 0, 0, 0.5), |
| 761 | }; |
| 762 | AngleAxisToQuaternion(axis_angle, quaternion); |
| 763 | ExpectJetArraysClose<4, 3>(quaternion, expected); |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | // Test that derivatives are correct for zero rotation. |
| 768 | TEST(Rotation, ZeroAngleAxisToQuaternionForJets) { |
| 769 | J3 axis_angle[3] = { J3(0, 0), J3(0, 1), J3(0, 2) }; |
| 770 | J3 quaternion[4]; |
| 771 | J3 expected[4] = { |
| 772 | MakeJ3(1.0, 0, 0, 0), |
| 773 | MakeJ3(0, 0.5, 0, 0), |
| 774 | MakeJ3(0, 0, 0.5, 0), |
| 775 | MakeJ3(0, 0, 0, 0.5), |
| 776 | }; |
| 777 | AngleAxisToQuaternion(axis_angle, quaternion); |
| 778 | ExpectJetArraysClose<4, 3>(quaternion, expected); |
| 779 | } |
| 780 | |
| 781 | // Test that exact conversion works for small angles. |
| 782 | TEST(Rotation, SmallQuaternionToAngleAxisForJets) { |
| 783 | // Examine small x rotations that are still large enough |
| 784 | // to be well within the range represented by doubles. |
| 785 | for (int i = -2; i >= kSmallTinyCutoff; i--) { |
| 786 | double theta = pow(10.0, i); |
| 787 | double s = sin(theta); |
| 788 | double c = cos(theta); |
| 789 | J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) }; |
| 790 | J4 axis_angle[3]; |
| 791 | J4 expected[3] = { |
| 792 | MakeJ4(s, -2*theta, 2*theta*c, 0, 0), |
| 793 | MakeJ4(0, 0, 0, 2*theta/s, 0), |
| 794 | MakeJ4(0, 0, 0, 0, 2*theta/s), |
| 795 | }; |
| 796 | QuaternionToAngleAxis(quaternion, axis_angle); |
| 797 | ExpectJetArraysClose<3, 4>(axis_angle, expected); |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | // Test that conversion works for very small angles. |
| 802 | TEST(Rotation, TinyQuaternionToAngleAxisForJets) { |
| 803 | // Examine tiny x rotations that extend all the way to where |
| 804 | // underflow occurs. |
| 805 | for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) { |
| 806 | double theta = pow(10.0, i); |
| 807 | double s = sin(theta); |
| 808 | double c = cos(theta); |
| 809 | J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) }; |
| 810 | J4 axis_angle[3]; |
| 811 | // To avoid loss of precision in the test itself, |
| 812 | // a finite expansion is used here, which will |
| 813 | // be exact up to machine precision for the test values used. |
| 814 | J4 expected[3] = { |
| 815 | MakeJ4(theta, -2*theta, 2.0, 0, 0), |
| 816 | MakeJ4(0, 0, 0, 2.0, 0), |
| 817 | MakeJ4(0, 0, 0, 0, 2.0), |
| 818 | }; |
| 819 | QuaternionToAngleAxis(quaternion, axis_angle); |
| 820 | ExpectJetArraysClose<3, 4>(axis_angle, expected); |
| 821 | } |
| 822 | } |
| 823 | |
| 824 | // Test that conversion works for no rotation. |
| 825 | TEST(Rotation, ZeroQuaternionToAngleAxisForJets) { |
| 826 | J4 quaternion[4] = { J4(1, 0), J4(0, 1), J4(0, 2), J4(0, 3) }; |
| 827 | J4 axis_angle[3]; |
| 828 | J4 expected[3] = { |
| 829 | MakeJ4(0, 0, 2.0, 0, 0), |
| 830 | MakeJ4(0, 0, 0, 2.0, 0), |
| 831 | MakeJ4(0, 0, 0, 0, 2.0), |
| 832 | }; |
| 833 | QuaternionToAngleAxis(quaternion, axis_angle); |
| 834 | ExpectJetArraysClose<3, 4>(axis_angle, expected); |
| 835 | } |
| 836 | |
| 837 | TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrixCanned) { |
| 838 | // Canned data generated in octave. |
| 839 | double const q[4] = { |
| 840 | +0.1956830471754074, |
| 841 | -0.0150618562474847, |
| 842 | +0.7634572982788086, |
| 843 | -0.3019454777240753, |
| 844 | }; |
| 845 | double const Q[3][3] = { // Scaled rotation matrix. |
| 846 | { -0.6355194033477252, 0.0951730541682254, 0.3078870197911186 }, |
| 847 | { -0.1411693904792992, 0.5297609702153905, -0.4551502574482019 }, |
| 848 | { -0.2896955822708862, -0.4669396571547050, -0.4536309793389248 }, |
| 849 | }; |
| 850 | double const R[3][3] = { // With unit rows and columns. |
| 851 | { -0.8918859164053080, 0.1335655625725649, 0.4320876677394745 }, |
| 852 | { -0.1981166751680096, 0.7434648665444399, -0.6387564287225856 }, |
| 853 | { -0.4065578619806013, -0.6553016349046693, -0.6366242786393164 }, |
| 854 | }; |
| 855 | |
| 856 | // Compute R from q and compare to known answer. |
| 857 | double Rq[3][3]; |
| 858 | QuaternionToScaledRotation<double>(q, Rq[0]); |
| 859 | ExpectArraysClose(9, Q[0], Rq[0], kTolerance); |
| 860 | |
| 861 | // Now do the same but compute R with normalization. |
| 862 | QuaternionToRotation<double>(q, Rq[0]); |
| 863 | ExpectArraysClose(9, R[0], Rq[0], kTolerance); |
| 864 | } |
| 865 | |
| 866 | |
| 867 | TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrix) { |
| 868 | // Rotation defined by a unit quaternion. |
| 869 | double const q[4] = { |
| 870 | 0.2318160216097109, |
| 871 | -0.0178430356832060, |
| 872 | 0.9044300776717159, |
| 873 | -0.3576998641394597, |
| 874 | }; |
| 875 | double const p[3] = { |
| 876 | +0.11, |
| 877 | -13.15, |
| 878 | 1.17, |
| 879 | }; |
| 880 | |
| 881 | double R[3 * 3]; |
| 882 | QuaternionToRotation(q, R); |
| 883 | |
| 884 | double result1[3]; |
| 885 | UnitQuaternionRotatePoint(q, p, result1); |
| 886 | |
| 887 | double result2[3]; |
| 888 | VectorRef(result2, 3) = ConstMatrixRef(R, 3, 3)* ConstVectorRef(p, 3); |
| 889 | ExpectArraysClose(3, result1, result2, kTolerance); |
| 890 | } |
| 891 | |
| 892 | |
| 893 | // Verify that (a * b) * c == a * (b * c). |
| 894 | TEST(Quaternion, MultiplicationIsAssociative) { |
| 895 | double a[4]; |
| 896 | double b[4]; |
| 897 | double c[4]; |
| 898 | for (int i = 0; i < 4; ++i) { |
| 899 | a[i] = 2 * RandDouble() - 1; |
| 900 | b[i] = 2 * RandDouble() - 1; |
| 901 | c[i] = 2 * RandDouble() - 1; |
| 902 | } |
| 903 | |
| 904 | double ab[4]; |
| 905 | double ab_c[4]; |
| 906 | QuaternionProduct(a, b, ab); |
| 907 | QuaternionProduct(ab, c, ab_c); |
| 908 | |
| 909 | double bc[4]; |
| 910 | double a_bc[4]; |
| 911 | QuaternionProduct(b, c, bc); |
| 912 | QuaternionProduct(a, bc, a_bc); |
| 913 | |
| 914 | ASSERT_NEAR(ab_c[0], a_bc[0], kTolerance); |
| 915 | ASSERT_NEAR(ab_c[1], a_bc[1], kTolerance); |
| 916 | ASSERT_NEAR(ab_c[2], a_bc[2], kTolerance); |
| 917 | ASSERT_NEAR(ab_c[3], a_bc[3], kTolerance); |
| 918 | } |
| 919 | |
| 920 | |
| 921 | TEST(AngleAxis, RotatePointGivesSameAnswerAsRotationMatrix) { |
| 922 | double angle_axis[3]; |
| 923 | double R[9]; |
| 924 | double p[3]; |
| 925 | double angle_axis_rotated_p[3]; |
| 926 | double rotation_matrix_rotated_p[3]; |
| 927 | |
| 928 | for (int i = 0; i < 10000; ++i) { |
Keir Mierle | efe7ac6 | 2012-06-24 22:25:28 -0700 | [diff] [blame] | 929 | double theta = (2.0 * i * 0.0011 - 1.0) * kPi; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 930 | for (int j = 0; j < 50; ++j) { |
| 931 | double norm2 = 0.0; |
| 932 | for (int k = 0; k < 3; ++k) { |
| 933 | angle_axis[k] = 2.0 * RandDouble() - 1.0; |
| 934 | p[k] = 2.0 * RandDouble() - 1.0; |
| 935 | norm2 = angle_axis[k] * angle_axis[k]; |
| 936 | } |
| 937 | |
| 938 | const double inv_norm = theta / sqrt(norm2); |
| 939 | for (int k = 0; k < 3; ++k) { |
| 940 | angle_axis[k] *= inv_norm; |
| 941 | } |
| 942 | |
| 943 | AngleAxisToRotationMatrix(angle_axis, R); |
| 944 | rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2]; |
| 945 | rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2]; |
| 946 | rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2]; |
| 947 | |
| 948 | AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p); |
| 949 | for (int k = 0; k < 3; ++k) { |
| 950 | EXPECT_NEAR(rotation_matrix_rotated_p[k], |
| 951 | angle_axis_rotated_p[k], |
| 952 | kTolerance) << "p: " << p[0] |
| 953 | << " " << p[1] |
| 954 | << " " << p[2] |
| 955 | << " angle_axis: " << angle_axis[0] |
| 956 | << " " << angle_axis[1] |
| 957 | << " " << angle_axis[2]; |
| 958 | } |
| 959 | } |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | TEST(AngleAxis, NearZeroRotatePointGivesSameAnswerAsRotationMatrix) { |
| 964 | double angle_axis[3]; |
| 965 | double R[9]; |
| 966 | double p[3]; |
| 967 | double angle_axis_rotated_p[3]; |
| 968 | double rotation_matrix_rotated_p[3]; |
| 969 | |
| 970 | for (int i = 0; i < 10000; ++i) { |
| 971 | double norm2 = 0.0; |
| 972 | for (int k = 0; k < 3; ++k) { |
| 973 | angle_axis[k] = 2.0 * RandDouble() - 1.0; |
| 974 | p[k] = 2.0 * RandDouble() - 1.0; |
| 975 | norm2 = angle_axis[k] * angle_axis[k]; |
| 976 | } |
| 977 | |
| 978 | double theta = (2.0 * i * 0.0001 - 1.0) * 1e-16; |
| 979 | const double inv_norm = theta / sqrt(norm2); |
| 980 | for (int k = 0; k < 3; ++k) { |
| 981 | angle_axis[k] *= inv_norm; |
| 982 | } |
| 983 | |
| 984 | AngleAxisToRotationMatrix(angle_axis, R); |
| 985 | rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2]; |
| 986 | rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2]; |
| 987 | rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2]; |
| 988 | |
| 989 | AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p); |
| 990 | for (int k = 0; k < 3; ++k) { |
| 991 | EXPECT_NEAR(rotation_matrix_rotated_p[k], |
| 992 | angle_axis_rotated_p[k], |
| 993 | kTolerance) << "p: " << p[0] |
| 994 | << " " << p[1] |
| 995 | << " " << p[2] |
| 996 | << " angle_axis: " << angle_axis[0] |
| 997 | << " " << angle_axis[1] |
| 998 | << " " << angle_axis[2]; |
| 999 | } |
| 1000 | } |
| 1001 | } |
| 1002 | |
Keir Mierle | 3e2c4ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 1003 | TEST(MatrixAdapter, RowMajor3x3ReturnTypeAndAccessIsCorrect) { |
| 1004 | double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 }; |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 1005 | const float const_array[9] = |
| 1006 | { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f }; |
Keir Mierle | 3e2c4ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 1007 | MatrixAdapter<double, 3, 1> A = RowMajorAdapter3x3(array); |
| 1008 | MatrixAdapter<const float, 3, 1> B = RowMajorAdapter3x3(const_array); |
| 1009 | |
| 1010 | for (int i = 0; i < 3; ++i) { |
| 1011 | for (int j = 0; j < 3; ++j) { |
| 1012 | // The values are integers from 1 to 9, so equality tests are appropriate |
| 1013 | // even for float and double values. |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 1014 | EXPECT_EQ(A(i, j), array[3*i+j]); |
| 1015 | EXPECT_EQ(B(i, j), const_array[3*i+j]); |
Keir Mierle | 3e2c4ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 1016 | } |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | TEST(MatrixAdapter, ColumnMajor3x3ReturnTypeAndAccessIsCorrect) { |
| 1021 | double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 }; |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 1022 | const float const_array[9] = |
| 1023 | { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f }; |
Keir Mierle | 3e2c4ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 1024 | MatrixAdapter<double, 1, 3> A = ColumnMajorAdapter3x3(array); |
| 1025 | MatrixAdapter<const float, 1, 3> B = ColumnMajorAdapter3x3(const_array); |
| 1026 | |
| 1027 | for (int i = 0; i < 3; ++i) { |
| 1028 | for (int j = 0; j < 3; ++j) { |
Sameer Agarwal | 509f68c | 2013-02-20 01:39:03 -0800 | [diff] [blame] | 1029 | // The values are integers from 1 to 9, so equality tests are |
| 1030 | // appropriate even for float and double values. |
| 1031 | EXPECT_EQ(A(i, j), array[3*j+i]); |
| 1032 | EXPECT_EQ(B(i, j), const_array[3*j+i]); |
Keir Mierle | 3e2c4ef | 2013-02-17 12:37:55 -0800 | [diff] [blame] | 1033 | } |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | TEST(MatrixAdapter, RowMajor2x4IsCorrect) { |
| 1038 | const int expected[8] = { 1, 2, 3, 4, 5, 6, 7, 8 }; |
| 1039 | int array[8]; |
| 1040 | MatrixAdapter<int, 4, 1> M(array); |
| 1041 | M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4; |
| 1042 | M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8; |
| 1043 | for (int k = 0; k < 8; ++k) { |
| 1044 | EXPECT_EQ(array[k], expected[k]); |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | TEST(MatrixAdapter, ColumnMajor2x4IsCorrect) { |
| 1049 | const int expected[8] = { 1, 5, 2, 6, 3, 7, 4, 8 }; |
| 1050 | int array[8]; |
| 1051 | MatrixAdapter<int, 1, 2> M(array); |
| 1052 | M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4; |
| 1053 | M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8; |
| 1054 | for (int k = 0; k < 8; ++k) { |
| 1055 | EXPECT_EQ(array[k], expected[k]); |
| 1056 | } |
| 1057 | } |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1058 | |
| 1059 | } // namespace internal |
| 1060 | } // namespace ceres |