Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: mierle@gmail.com (Keir Mierle) |
| 30 | // sameeragarwal@google.com (Sameer Agarwal) |
| 31 | // thadh@gmail.com (Thad Hughes) |
| 32 | // |
| 33 | // This numeric diff implementation differs from the one found in |
| 34 | // numeric_diff_cost_function.h by supporting numericdiff on cost |
| 35 | // functions with variable numbers of parameters with variable |
| 36 | // sizes. With the other implementation, all the sizes (both the |
| 37 | // number of parameter blocks and the size of each block) must be |
| 38 | // fixed at compile time. |
| 39 | // |
| 40 | // The functor API differs slightly from the API for fixed size |
| 41 | // numeric diff; the expected interface for the cost functors is: |
| 42 | // |
| 43 | // struct MyCostFunctor { |
| 44 | // template<typename T> |
| 45 | // bool operator()(double const* const* parameters, double* residuals) const { |
| 46 | // // Use parameters[i] to access the i'th parameter block. |
| 47 | // } |
| 48 | // } |
| 49 | // |
| 50 | // Since the sizing of the parameters is done at runtime, you must |
| 51 | // also specify the sizes after creating the |
| 52 | // DynamicNumericDiffCostFunction. For example: |
| 53 | // |
| 54 | // DynamicAutoDiffCostFunction<MyCostFunctor, CENTRAL> cost_function( |
| 55 | // new MyCostFunctor()); |
| 56 | // cost_function.AddParameterBlock(5); |
| 57 | // cost_function.AddParameterBlock(10); |
| 58 | // cost_function.SetNumResiduals(21); |
| 59 | |
| 60 | #ifndef CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_ |
| 61 | #define CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_ |
| 62 | |
| 63 | #include <cmath> |
| 64 | #include <numeric> |
| 65 | #include <vector> |
| 66 | |
| 67 | #include "ceres/cost_function.h" |
| 68 | #include "ceres/internal/scoped_ptr.h" |
| 69 | #include "ceres/internal/eigen.h" |
Sameer Agarwal | 35ee1f7 | 2013-10-09 10:12:43 -0700 | [diff] [blame] | 70 | #include "ceres/internal/numeric_diff.h" |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 71 | #include "glog/logging.h" |
| 72 | |
| 73 | namespace ceres { |
| 74 | |
| 75 | template <typename CostFunctor, NumericDiffMethod method = CENTRAL> |
| 76 | class DynamicNumericDiffCostFunction : public CostFunction { |
| 77 | public: |
Sameer Agarwal | 35ee1f7 | 2013-10-09 10:12:43 -0700 | [diff] [blame] | 78 | explicit DynamicNumericDiffCostFunction(const CostFunctor* functor, |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 79 | Ownership ownership = TAKE_OWNERSHIP, |
| 80 | double relative_step_size = 1e-6) |
| 81 | : functor_(functor), |
| 82 | ownership_(ownership), |
| 83 | relative_step_size_(relative_step_size) { |
| 84 | } |
| 85 | |
| 86 | virtual ~DynamicNumericDiffCostFunction() { |
| 87 | if (ownership_ != TAKE_OWNERSHIP) { |
| 88 | functor_.release(); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | void AddParameterBlock(int size) { |
| 93 | mutable_parameter_block_sizes()->push_back(size); |
| 94 | } |
| 95 | |
| 96 | void SetNumResiduals(int num_residuals) { |
| 97 | set_num_residuals(num_residuals); |
| 98 | } |
| 99 | |
| 100 | virtual bool Evaluate(double const* const* parameters, |
| 101 | double* residuals, |
| 102 | double** jacobians) const { |
| 103 | CHECK_GT(num_residuals(), 0) |
| 104 | << "You must call DynamicNumericDiffCostFunction::SetNumResiduals() " |
| 105 | << "before DynamicNumericDiffCostFunction::Evaluate()."; |
| 106 | |
Sameer Agarwal | 85561ee | 2014-01-07 22:22:14 -0800 | [diff] [blame] | 107 | const vector<int32>& block_sizes = parameter_block_sizes(); |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 108 | CHECK(!block_sizes.empty()) |
| 109 | << "You must call DynamicNumericDiffCostFunction::AddParameterBlock() " |
| 110 | << "before DynamicNumericDiffCostFunction::Evaluate()."; |
| 111 | |
Sameer Agarwal | 35ee1f7 | 2013-10-09 10:12:43 -0700 | [diff] [blame] | 112 | const bool status = EvaluateCostFunctor(parameters, residuals); |
Sameer Agarwal | 10ac7d8 | 2013-10-03 14:37:07 -0700 | [diff] [blame] | 113 | if (jacobians == NULL || !status) { |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 114 | return status; |
| 115 | } |
| 116 | |
| 117 | // Create local space for a copy of the parameters which will get mutated. |
| 118 | int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0); |
| 119 | vector<double> parameters_copy(parameters_size); |
| 120 | vector<double*> parameters_references_copy(block_sizes.size()); |
| 121 | parameters_references_copy[0] = ¶meters_copy[0]; |
| 122 | for (int block = 1; block < block_sizes.size(); ++block) { |
| 123 | parameters_references_copy[block] = parameters_references_copy[block - 1] |
| 124 | + block_sizes[block - 1]; |
| 125 | } |
| 126 | |
| 127 | // Copy the parameters into the local temp space. |
| 128 | for (int block = 0; block < block_sizes.size(); ++block) { |
| 129 | memcpy(parameters_references_copy[block], |
| 130 | parameters[block], |
| 131 | block_sizes[block] * sizeof(*parameters[block])); |
| 132 | } |
| 133 | |
| 134 | for (int block = 0; block < block_sizes.size(); ++block) { |
| 135 | if (jacobians[block] != NULL && |
| 136 | !EvaluateJacobianForParameterBlock(block_sizes[block], |
| 137 | block, |
| 138 | relative_step_size_, |
| 139 | residuals, |
| 140 | ¶meters_references_copy[0], |
| 141 | jacobians)) { |
| 142 | return false; |
| 143 | } |
| 144 | } |
| 145 | return true; |
| 146 | } |
| 147 | |
| 148 | private: |
| 149 | bool EvaluateJacobianForParameterBlock(const int parameter_block_size, |
| 150 | const int parameter_block, |
| 151 | const double relative_step_size, |
| 152 | double const* residuals_at_eval_point, |
| 153 | double** parameters, |
| 154 | double** jacobians) const { |
| 155 | using Eigen::Map; |
| 156 | using Eigen::Matrix; |
| 157 | using Eigen::Dynamic; |
| 158 | using Eigen::RowMajor; |
| 159 | |
| 160 | typedef Matrix<double, Dynamic, 1> ResidualVector; |
| 161 | typedef Matrix<double, Dynamic, 1> ParameterVector; |
| 162 | typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix; |
| 163 | |
| 164 | int num_residuals = this->num_residuals(); |
| 165 | |
| 166 | Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block], |
| 167 | num_residuals, |
| 168 | parameter_block_size); |
| 169 | |
| 170 | // Mutate one element at a time and then restore. |
| 171 | Map<ParameterVector> x_plus_delta(parameters[parameter_block], |
| 172 | parameter_block_size); |
| 173 | ParameterVector x(x_plus_delta); |
| 174 | ParameterVector step_size = x.array().abs() * relative_step_size; |
| 175 | |
| 176 | // To handle cases where a paremeter is exactly zero, instead use |
| 177 | // the mean step_size for the other dimensions. |
| 178 | double fallback_step_size = step_size.sum() / step_size.rows(); |
| 179 | if (fallback_step_size == 0.0) { |
| 180 | // If all the parameters are zero, there's no good answer. Use the given |
| 181 | // relative step_size as absolute step_size and hope for the best. |
| 182 | fallback_step_size = relative_step_size; |
| 183 | } |
| 184 | |
| 185 | // For each parameter in the parameter block, use finite |
| 186 | // differences to compute the derivative for that parameter. |
| 187 | for (int j = 0; j < parameter_block_size; ++j) { |
| 188 | if (step_size(j) == 0.0) { |
| 189 | // The parameter is exactly zero, so compromise and use the |
| 190 | // mean step_size from the other parameters. This can break in |
| 191 | // many cases, but it's hard to pick a good number without |
| 192 | // problem specific knowledge. |
| 193 | step_size(j) = fallback_step_size; |
| 194 | } |
| 195 | x_plus_delta(j) = x(j) + step_size(j); |
| 196 | |
| 197 | ResidualVector residuals(num_residuals); |
Sameer Agarwal | 35ee1f7 | 2013-10-09 10:12:43 -0700 | [diff] [blame] | 198 | if (!EvaluateCostFunctor(parameters, &residuals[0])) { |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 199 | // Something went wrong; bail. |
| 200 | return false; |
| 201 | } |
| 202 | |
| 203 | // Compute this column of the jacobian in 3 steps: |
| 204 | // 1. Store residuals for the forward part. |
| 205 | // 2. Subtract residuals for the backward (or 0) part. |
| 206 | // 3. Divide out the run. |
Alex Stewart | 468a23f | 2013-10-04 10:58:18 +0100 | [diff] [blame] | 207 | parameter_jacobian.col(j).matrix() = residuals; |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 208 | |
| 209 | double one_over_h = 1 / step_size(j); |
| 210 | if (method == CENTRAL) { |
| 211 | // Compute the function on the other side of x(j). |
| 212 | x_plus_delta(j) = x(j) - step_size(j); |
| 213 | |
Sameer Agarwal | 35ee1f7 | 2013-10-09 10:12:43 -0700 | [diff] [blame] | 214 | if (!EvaluateCostFunctor(parameters, &residuals[0])) { |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 215 | // Something went wrong; bail. |
| 216 | return false; |
| 217 | } |
| 218 | |
| 219 | parameter_jacobian.col(j) -= residuals; |
| 220 | one_over_h /= 2; |
| 221 | } else { |
| 222 | // Forward difference only; reuse existing residuals evaluation. |
| 223 | parameter_jacobian.col(j) -= |
| 224 | Map<const ResidualVector>(residuals_at_eval_point, num_residuals); |
| 225 | } |
| 226 | x_plus_delta(j) = x(j); // Restore x_plus_delta. |
| 227 | |
| 228 | // Divide out the run to get slope. |
| 229 | parameter_jacobian.col(j) *= one_over_h; |
| 230 | } |
| 231 | return true; |
| 232 | } |
| 233 | |
Sameer Agarwal | 35ee1f7 | 2013-10-09 10:12:43 -0700 | [diff] [blame] | 234 | bool EvaluateCostFunctor(double const* const* parameters, |
| 235 | double* residuals) const { |
| 236 | return EvaluateCostFunctorImpl(functor_.get(), |
| 237 | parameters, |
| 238 | residuals, |
| 239 | functor_.get()); |
| 240 | } |
| 241 | |
| 242 | // Helper templates to allow evaluation of a functor or a |
| 243 | // CostFunction. |
| 244 | bool EvaluateCostFunctorImpl(const CostFunctor* functor, |
| 245 | double const* const* parameters, |
| 246 | double* residuals, |
| 247 | const void* /* NOT USED */) const { |
| 248 | return (*functor)(parameters, residuals); |
| 249 | } |
| 250 | |
| 251 | bool EvaluateCostFunctorImpl(const CostFunctor* functor, |
| 252 | double const* const* parameters, |
| 253 | double* residuals, |
| 254 | const CostFunction* /* NOT USED */) const { |
| 255 | return functor->Evaluate(parameters, residuals, NULL); |
| 256 | } |
| 257 | |
| 258 | internal::scoped_ptr<const CostFunctor> functor_; |
Sameer Agarwal | 40df20b | 2013-10-03 10:40:55 -0700 | [diff] [blame] | 259 | Ownership ownership_; |
| 260 | const double relative_step_size_; |
| 261 | }; |
| 262 | |
| 263 | } // namespace ceres |
| 264 | |
| 265 | #endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_ |