blob: 2b6e8260286585b3a60d8b2ea1d883d7e497380b [file] [log] [blame]
Sameer Agarwal40df20b2013-10-03 10:40:55 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: mierle@gmail.com (Keir Mierle)
30// sameeragarwal@google.com (Sameer Agarwal)
31// thadh@gmail.com (Thad Hughes)
32//
33// This numeric diff implementation differs from the one found in
34// numeric_diff_cost_function.h by supporting numericdiff on cost
35// functions with variable numbers of parameters with variable
36// sizes. With the other implementation, all the sizes (both the
37// number of parameter blocks and the size of each block) must be
38// fixed at compile time.
39//
40// The functor API differs slightly from the API for fixed size
41// numeric diff; the expected interface for the cost functors is:
42//
43// struct MyCostFunctor {
44// template<typename T>
45// bool operator()(double const* const* parameters, double* residuals) const {
46// // Use parameters[i] to access the i'th parameter block.
47// }
48// }
49//
50// Since the sizing of the parameters is done at runtime, you must
51// also specify the sizes after creating the
52// DynamicNumericDiffCostFunction. For example:
53//
54// DynamicAutoDiffCostFunction<MyCostFunctor, CENTRAL> cost_function(
55// new MyCostFunctor());
56// cost_function.AddParameterBlock(5);
57// cost_function.AddParameterBlock(10);
58// cost_function.SetNumResiduals(21);
59
60#ifndef CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_
61#define CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_
62
63#include <cmath>
64#include <numeric>
65#include <vector>
66
67#include "ceres/cost_function.h"
68#include "ceres/internal/scoped_ptr.h"
69#include "ceres/internal/eigen.h"
Sameer Agarwal35ee1f72013-10-09 10:12:43 -070070#include "ceres/internal/numeric_diff.h"
Sameer Agarwal40df20b2013-10-03 10:40:55 -070071#include "glog/logging.h"
72
73namespace ceres {
74
75template <typename CostFunctor, NumericDiffMethod method = CENTRAL>
76class DynamicNumericDiffCostFunction : public CostFunction {
77 public:
Sameer Agarwal35ee1f72013-10-09 10:12:43 -070078 explicit DynamicNumericDiffCostFunction(const CostFunctor* functor,
Sameer Agarwal40df20b2013-10-03 10:40:55 -070079 Ownership ownership = TAKE_OWNERSHIP,
80 double relative_step_size = 1e-6)
81 : functor_(functor),
82 ownership_(ownership),
83 relative_step_size_(relative_step_size) {
84 }
85
86 virtual ~DynamicNumericDiffCostFunction() {
87 if (ownership_ != TAKE_OWNERSHIP) {
88 functor_.release();
89 }
90 }
91
92 void AddParameterBlock(int size) {
93 mutable_parameter_block_sizes()->push_back(size);
94 }
95
96 void SetNumResiduals(int num_residuals) {
97 set_num_residuals(num_residuals);
98 }
99
100 virtual bool Evaluate(double const* const* parameters,
101 double* residuals,
102 double** jacobians) const {
103 CHECK_GT(num_residuals(), 0)
104 << "You must call DynamicNumericDiffCostFunction::SetNumResiduals() "
105 << "before DynamicNumericDiffCostFunction::Evaluate().";
106
Sameer Agarwal85561ee2014-01-07 22:22:14 -0800107 const vector<int32>& block_sizes = parameter_block_sizes();
Sameer Agarwal40df20b2013-10-03 10:40:55 -0700108 CHECK(!block_sizes.empty())
109 << "You must call DynamicNumericDiffCostFunction::AddParameterBlock() "
110 << "before DynamicNumericDiffCostFunction::Evaluate().";
111
Sameer Agarwal35ee1f72013-10-09 10:12:43 -0700112 const bool status = EvaluateCostFunctor(parameters, residuals);
Sameer Agarwal10ac7d82013-10-03 14:37:07 -0700113 if (jacobians == NULL || !status) {
Sameer Agarwal40df20b2013-10-03 10:40:55 -0700114 return status;
115 }
116
117 // Create local space for a copy of the parameters which will get mutated.
118 int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0);
119 vector<double> parameters_copy(parameters_size);
120 vector<double*> parameters_references_copy(block_sizes.size());
121 parameters_references_copy[0] = &parameters_copy[0];
122 for (int block = 1; block < block_sizes.size(); ++block) {
123 parameters_references_copy[block] = parameters_references_copy[block - 1]
124 + block_sizes[block - 1];
125 }
126
127 // Copy the parameters into the local temp space.
128 for (int block = 0; block < block_sizes.size(); ++block) {
129 memcpy(parameters_references_copy[block],
130 parameters[block],
131 block_sizes[block] * sizeof(*parameters[block]));
132 }
133
134 for (int block = 0; block < block_sizes.size(); ++block) {
135 if (jacobians[block] != NULL &&
136 !EvaluateJacobianForParameterBlock(block_sizes[block],
137 block,
138 relative_step_size_,
139 residuals,
140 &parameters_references_copy[0],
141 jacobians)) {
142 return false;
143 }
144 }
145 return true;
146 }
147
148 private:
149 bool EvaluateJacobianForParameterBlock(const int parameter_block_size,
150 const int parameter_block,
151 const double relative_step_size,
152 double const* residuals_at_eval_point,
153 double** parameters,
154 double** jacobians) const {
155 using Eigen::Map;
156 using Eigen::Matrix;
157 using Eigen::Dynamic;
158 using Eigen::RowMajor;
159
160 typedef Matrix<double, Dynamic, 1> ResidualVector;
161 typedef Matrix<double, Dynamic, 1> ParameterVector;
162 typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix;
163
164 int num_residuals = this->num_residuals();
165
166 Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
167 num_residuals,
168 parameter_block_size);
169
170 // Mutate one element at a time and then restore.
171 Map<ParameterVector> x_plus_delta(parameters[parameter_block],
172 parameter_block_size);
173 ParameterVector x(x_plus_delta);
174 ParameterVector step_size = x.array().abs() * relative_step_size;
175
176 // To handle cases where a paremeter is exactly zero, instead use
177 // the mean step_size for the other dimensions.
178 double fallback_step_size = step_size.sum() / step_size.rows();
179 if (fallback_step_size == 0.0) {
180 // If all the parameters are zero, there's no good answer. Use the given
181 // relative step_size as absolute step_size and hope for the best.
182 fallback_step_size = relative_step_size;
183 }
184
185 // For each parameter in the parameter block, use finite
186 // differences to compute the derivative for that parameter.
187 for (int j = 0; j < parameter_block_size; ++j) {
188 if (step_size(j) == 0.0) {
189 // The parameter is exactly zero, so compromise and use the
190 // mean step_size from the other parameters. This can break in
191 // many cases, but it's hard to pick a good number without
192 // problem specific knowledge.
193 step_size(j) = fallback_step_size;
194 }
195 x_plus_delta(j) = x(j) + step_size(j);
196
197 ResidualVector residuals(num_residuals);
Sameer Agarwal35ee1f72013-10-09 10:12:43 -0700198 if (!EvaluateCostFunctor(parameters, &residuals[0])) {
Sameer Agarwal40df20b2013-10-03 10:40:55 -0700199 // Something went wrong; bail.
200 return false;
201 }
202
203 // Compute this column of the jacobian in 3 steps:
204 // 1. Store residuals for the forward part.
205 // 2. Subtract residuals for the backward (or 0) part.
206 // 3. Divide out the run.
Alex Stewart468a23f2013-10-04 10:58:18 +0100207 parameter_jacobian.col(j).matrix() = residuals;
Sameer Agarwal40df20b2013-10-03 10:40:55 -0700208
209 double one_over_h = 1 / step_size(j);
210 if (method == CENTRAL) {
211 // Compute the function on the other side of x(j).
212 x_plus_delta(j) = x(j) - step_size(j);
213
Sameer Agarwal35ee1f72013-10-09 10:12:43 -0700214 if (!EvaluateCostFunctor(parameters, &residuals[0])) {
Sameer Agarwal40df20b2013-10-03 10:40:55 -0700215 // Something went wrong; bail.
216 return false;
217 }
218
219 parameter_jacobian.col(j) -= residuals;
220 one_over_h /= 2;
221 } else {
222 // Forward difference only; reuse existing residuals evaluation.
223 parameter_jacobian.col(j) -=
224 Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
225 }
226 x_plus_delta(j) = x(j); // Restore x_plus_delta.
227
228 // Divide out the run to get slope.
229 parameter_jacobian.col(j) *= one_over_h;
230 }
231 return true;
232 }
233
Sameer Agarwal35ee1f72013-10-09 10:12:43 -0700234 bool EvaluateCostFunctor(double const* const* parameters,
235 double* residuals) const {
236 return EvaluateCostFunctorImpl(functor_.get(),
237 parameters,
238 residuals,
239 functor_.get());
240 }
241
242 // Helper templates to allow evaluation of a functor or a
243 // CostFunction.
244 bool EvaluateCostFunctorImpl(const CostFunctor* functor,
245 double const* const* parameters,
246 double* residuals,
247 const void* /* NOT USED */) const {
248 return (*functor)(parameters, residuals);
249 }
250
251 bool EvaluateCostFunctorImpl(const CostFunctor* functor,
252 double const* const* parameters,
253 double* residuals,
254 const CostFunction* /* NOT USED */) const {
255 return functor->Evaluate(parameters, residuals, NULL);
256 }
257
258 internal::scoped_ptr<const CostFunctor> functor_;
Sameer Agarwal40df20b2013-10-03 10:40:55 -0700259 Ownership ownership_;
260 const double relative_step_size_;
261};
262
263} // namespace ceres
264
265#endif // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_