blob: f091bc5b187572078a6ef61dbc33793c1e84b50a [file] [log] [blame]
Keir Mierle8ebb0732012-04-30 23:09:08 -07001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Abstract interface for objects solving linear systems of various
32// kinds.
33
34#ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
35#define CERES_INTERNAL_LINEAR_SOLVER_H_
36
37#include <cstddef>
Sameer Agarwal509f68c2013-02-20 01:39:03 -080038#include <map>
Sameer Agarwala427c872013-06-24 17:50:56 -070039#include <string>
Sameer Agarwal0c52f1e2012-09-17 11:30:14 -070040#include <vector>
Keir Mierle8ebb0732012-04-30 23:09:08 -070041#include "ceres/block_sparse_matrix.h"
42#include "ceres/casts.h"
43#include "ceres/compressed_row_sparse_matrix.h"
44#include "ceres/dense_sparse_matrix.h"
Sameer Agarwalbdd87c02013-01-29 16:24:31 -080045#include "ceres/execution_summary.h"
Keir Mierle8ebb0732012-04-30 23:09:08 -070046#include "ceres/triplet_sparse_matrix.h"
47#include "ceres/types.h"
Sameer Agarwal509f68c2013-02-20 01:39:03 -080048#include "glog/logging.h"
Keir Mierle8ebb0732012-04-30 23:09:08 -070049
50namespace ceres {
51namespace internal {
52
Sameer Agarwal79bde352013-11-21 21:33:51 -080053enum LinearSolverTerminationType {
Sameer Agarwal33e01b92013-11-27 10:24:03 -080054 // Termination criterion was met.
55 LINEAR_SOLVER_SUCCESS,
Sameer Agarwal79bde352013-11-21 21:33:51 -080056
57 // Solver ran for max_num_iterations and terminated before the
Sameer Agarwal33e01b92013-11-27 10:24:03 -080058 // termination tolerance could be satisfied.
59 LINEAR_SOLVER_NO_CONVERGENCE,
Sameer Agarwal79bde352013-11-21 21:33:51 -080060
Sameer Agarwal33e01b92013-11-27 10:24:03 -080061 // Solver was terminated due to numerical problems, generally due to
62 // the linear system being poorly conditioned.
63 LINEAR_SOLVER_FAILURE,
Sameer Agarwal79bde352013-11-21 21:33:51 -080064
Sameer Agarwal5fd48062013-12-02 12:16:53 -080065 // Solver failed with a fatal error that cannot be recovered from,
66 // e.g. CHOLMOD ran out of memory when computing the symbolic or
67 // numeric factorization or an underlying library was called with
68 // the wrong arguments.
Sameer Agarwal33e01b92013-11-27 10:24:03 -080069 LINEAR_SOLVER_FATAL_ERROR
Sameer Agarwal79bde352013-11-21 21:33:51 -080070};
71
72
Keir Mierle8ebb0732012-04-30 23:09:08 -070073class LinearOperator;
74
75// Abstract base class for objects that implement algorithms for
76// solving linear systems
77//
78// Ax = b
79//
80// It is expected that a single instance of a LinearSolver object
Sameer Agarwala9d8ef82012-05-14 02:28:05 -070081// maybe used multiple times for solving multiple linear systems with
82// the same sparsity structure. This allows them to cache and reuse
83// information across solves. This means that calling Solve on the
84// same LinearSolver instance with two different linear systems will
85// result in undefined behaviour.
Keir Mierle8ebb0732012-04-30 23:09:08 -070086//
87// Subclasses of LinearSolver use two structs to configure themselves.
88// The Options struct configures the LinearSolver object for its
89// lifetime. The PerSolveOptions struct is used to specify options for
90// a particular Solve call.
91class LinearSolver {
92 public:
93 struct Options {
94 Options()
95 : type(SPARSE_NORMAL_CHOLESKY),
96 preconditioner_type(JACOBI),
Sameer Agarwalf06b9fa2013-10-27 21:38:13 -070097 visibility_clustering_type(CANONICAL_VIEWS),
Sameer Agarwal367b65e2013-08-09 10:35:37 -070098 dense_linear_algebra_library_type(EIGEN),
99 sparse_linear_algebra_library_type(SUITE_SPARSE),
Sameer Agarwal9189f4e2013-04-19 17:09:49 -0700100 use_postordering(false),
Richard Stebbing32530782014-04-26 07:42:23 +0100101 dynamic_sparsity(false),
Keir Mierle8ebb0732012-04-30 23:09:08 -0700102 min_num_iterations(1),
103 max_num_iterations(1),
104 num_threads(1),
Keir Mierle8ebb0732012-04-30 23:09:08 -0700105 residual_reset_period(10),
Sameer Agarwal31730ef2013-02-28 11:20:28 -0800106 row_block_size(Eigen::Dynamic),
107 e_block_size(Eigen::Dynamic),
108 f_block_size(Eigen::Dynamic) {
Keir Mierle8ebb0732012-04-30 23:09:08 -0700109 }
110
111 LinearSolverType type;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700112 PreconditionerType preconditioner_type;
Sameer Agarwalf06b9fa2013-10-27 21:38:13 -0700113 VisibilityClusteringType visibility_clustering_type;
Sameer Agarwal367b65e2013-08-09 10:35:37 -0700114 DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
115 SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
Sameer Agarwalb0518732012-05-29 00:27:57 -0700116
Sameer Agarwal9189f4e2013-04-19 17:09:49 -0700117 // See solver.h for information about this flag.
118 bool use_postordering;
Richard Stebbing32530782014-04-26 07:42:23 +0100119 bool dynamic_sparsity;
Sameer Agarwal7a3c43b2012-06-05 23:10:59 -0700120
Keir Mierle8ebb0732012-04-30 23:09:08 -0700121 // Number of internal iterations that the solver uses. This
122 // parameter only makes sense for iterative solvers like CG.
123 int min_num_iterations;
124 int max_num_iterations;
125
126 // If possible, how many threads can the solver use.
127 int num_threads;
128
Sameer Agarwal0c52f1e2012-09-17 11:30:14 -0700129 // Hints about the order in which the parameter blocks should be
130 // eliminated by the linear solver.
131 //
132 // For example if elimination_groups is a vector of size k, then
133 // the linear solver is informed that it should eliminate the
Sameer Agarwal931c3092013-02-25 09:46:21 -0800134 // parameter blocks 0 ... elimination_groups[0] - 1 first, and
135 // then elimination_groups[0] ... elimination_groups[1] - 1 and so
136 // on. Within each elimination group, the linear solver is free to
137 // choose how the parameter blocks are ordered. Different linear
138 // solvers have differing requirements on elimination_groups.
Sameer Agarwal0c52f1e2012-09-17 11:30:14 -0700139 //
140 // The most common use is for Schur type solvers, where there
141 // should be at least two elimination groups and the first
142 // elimination group must form an independent set in the normal
143 // equations. The first elimination group corresponds to the
144 // num_eliminate_blocks in the Schur type solvers.
145 vector<int> elimination_groups;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700146
147 // Iterative solvers, e.g. Preconditioned Conjugate Gradients
148 // maintain a cheap estimate of the residual which may become
149 // inaccurate over time. Thus for non-zero values of this
150 // parameter, the solver can be told to recalculate the value of
151 // the residual using a |b - Ax| evaluation.
152 int residual_reset_period;
153
154 // If the block sizes in a BlockSparseMatrix are fixed, then in
155 // some cases the Schur complement based solvers can detect and
156 // specialize on them.
157 //
158 // It is expected that these parameters are set programmatically
159 // rather than manually.
160 //
Sameer Agarwala9d8ef82012-05-14 02:28:05 -0700161 // Please see schur_complement_solver.h and schur_eliminator.h for
162 // more details.
Keir Mierle8ebb0732012-04-30 23:09:08 -0700163 int row_block_size;
164 int e_block_size;
165 int f_block_size;
166 };
167
168 // Options for the Solve method.
169 struct PerSolveOptions {
170 PerSolveOptions()
171 : D(NULL),
172 preconditioner(NULL),
173 r_tolerance(0.0),
174 q_tolerance(0.0) {
175 }
176
177 // This option only makes sense for unsymmetric linear solvers
178 // that can solve rectangular linear systems.
179 //
180 // Given a matrix A, an optional diagonal matrix D as a vector,
181 // and a vector b, the linear solver will solve for
182 //
183 // | A | x = | b |
184 // | D | | 0 |
185 //
186 // If D is null, then it is treated as zero, and the solver returns
187 // the solution to
188 //
189 // A x = b
190 //
191 // In either case, x is the vector that solves the following
192 // optimization problem.
193 //
Keir Mierlef7898fb2012-05-05 20:55:08 -0700194 // arg min_x ||Ax - b||^2 + ||Dx||^2
Keir Mierle8ebb0732012-04-30 23:09:08 -0700195 //
196 // Here A is a matrix of size m x n, with full column rank. If A
197 // does not have full column rank, the results returned by the
198 // solver cannot be relied on. D, if it is not null is an array of
199 // size n. b is an array of size m and x is an array of size n.
200 double * D;
201
202 // This option only makes sense for iterative solvers.
203 //
204 // In general the performance of an iterative linear solver
205 // depends on the condition number of the matrix A. For example
206 // the convergence rate of the conjugate gradients algorithm
207 // is proportional to the square root of the condition number.
208 //
209 // One particularly useful technique for improving the
210 // conditioning of a linear system is to precondition it. In its
211 // simplest form a preconditioner is a matrix M such that instead
212 // of solving Ax = b, we solve the linear system AM^{-1} y = b
213 // instead, where M is such that the condition number k(AM^{-1})
214 // is smaller than the conditioner k(A). Given the solution to
215 // this system, x = M^{-1} y. The iterative solver takes care of
216 // the mechanics of solving the preconditioned system and
217 // returning the corrected solution x. The user only needs to
218 // supply a linear operator.
219 //
220 // A null preconditioner is equivalent to an identity matrix being
221 // used a preconditioner.
222 LinearOperator* preconditioner;
223
224
225 // The following tolerance related options only makes sense for
226 // iterative solvers. Direct solvers ignore them.
227
228 // Solver terminates when
229 //
230 // |Ax - b| <= r_tolerance * |b|.
231 //
232 // This is the most commonly used termination criterion for
233 // iterative solvers.
234 double r_tolerance;
235
236 // For PSD matrices A, let
237 //
238 // Q(x) = x'Ax - 2b'x
239 //
240 // be the cost of the quadratic function defined by A and b. Then,
241 // the solver terminates at iteration i if
242 //
243 // i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
244 //
245 // This termination criterion is more useful when using CG to
246 // solve the Newton step. This particular convergence test comes
247 // from Stephen Nash's work on truncated Newton
248 // methods. References:
249 //
250 // 1. Stephen G. Nash & Ariela Sofer, Assessing A Search
251 // Direction Within A Truncated Newton Method, Operation
252 // Research Letters 9(1990) 219-221.
253 //
254 // 2. Stephen G. Nash, A Survey of Truncated Newton Methods,
255 // Journal of Computational and Applied Mathematics,
256 // 124(1-2), 45-59, 2000.
257 //
258 double q_tolerance;
259 };
260
261 // Summary of a call to the Solve method. We should move away from
262 // the true/false method for determining solver success. We should
263 // let the summary object do the talking.
264 struct Summary {
265 Summary()
266 : residual_norm(0.0),
267 num_iterations(-1),
Sameer Agarwal33e01b92013-11-27 10:24:03 -0800268 termination_type(LINEAR_SOLVER_FAILURE) {
Keir Mierle8ebb0732012-04-30 23:09:08 -0700269 }
270
271 double residual_norm;
272 int num_iterations;
273 LinearSolverTerminationType termination_type;
Sameer Agarwal89a592f2013-11-26 11:35:49 -0800274 string message;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700275 };
276
277 virtual ~LinearSolver();
278
279 // Solve Ax = b.
280 virtual Summary Solve(LinearOperator* A,
281 const double* b,
282 const PerSolveOptions& per_solve_options,
283 double* x) = 0;
284
Sameer Agarwal42a84b82013-02-01 12:22:53 -0800285 // The following two methods return copies instead of references so
286 // that the base class implementation does not have to worry about
287 // life time issues. Further, these calls are not expected to be
288 // frequent or performance sensitive.
289 virtual map<string, int> CallStatistics() const {
290 return map<string, int>();
291 }
292
293 virtual map<string, double> TimeStatistics() const {
294 return map<string, double>();
295 }
296
Sameer Agarwala9d8ef82012-05-14 02:28:05 -0700297 // Factory
Keir Mierle8ebb0732012-04-30 23:09:08 -0700298 static LinearSolver* Create(const Options& options);
299};
300
301// This templated subclass of LinearSolver serves as a base class for
302// other linear solvers that depend on the particular matrix layout of
303// the underlying linear operator. For example some linear solvers
304// need low level access to the TripletSparseMatrix implementing the
305// LinearOperator interface. This class hides those implementation
306// details behind a private virtual method, and has the Solve method
307// perform the necessary upcasting.
308template <typename MatrixType>
309class TypedLinearSolver : public LinearSolver {
310 public:
311 virtual ~TypedLinearSolver() {}
312 virtual LinearSolver::Summary Solve(
313 LinearOperator* A,
314 const double* b,
315 const LinearSolver::PerSolveOptions& per_solve_options,
316 double* x) {
Sameer Agarwal42a84b82013-02-01 12:22:53 -0800317 ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_);
Keir Mierle8ebb0732012-04-30 23:09:08 -0700318 CHECK_NOTNULL(A);
319 CHECK_NOTNULL(b);
320 CHECK_NOTNULL(x);
321 return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
322 }
323
Sameer Agarwal42a84b82013-02-01 12:22:53 -0800324 virtual map<string, int> CallStatistics() const {
325 return execution_summary_.calls();
326 }
327
328 virtual map<string, double> TimeStatistics() const {
329 return execution_summary_.times();
330 }
331
Keir Mierle8ebb0732012-04-30 23:09:08 -0700332 private:
333 virtual LinearSolver::Summary SolveImpl(
334 MatrixType* A,
335 const double* b,
336 const LinearSolver::PerSolveOptions& per_solve_options,
337 double* x) = 0;
Sameer Agarwal42a84b82013-02-01 12:22:53 -0800338
339 ExecutionSummary execution_summary_;
Keir Mierle8ebb0732012-04-30 23:09:08 -0700340};
341
342// Linear solvers that depend on acccess to the low level structure of
343// a SparseMatrix.
344typedef TypedLinearSolver<BlockSparseMatrix> BlockSparseMatrixSolver; // NOLINT
Keir Mierle8ebb0732012-04-30 23:09:08 -0700345typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver; // NOLINT
346typedef TypedLinearSolver<DenseSparseMatrix> DenseSparseMatrixSolver; // NOLINT
347typedef TypedLinearSolver<TripletSparseMatrix> TripletSparseMatrixSolver; // NOLINT
348
349} // namespace internal
350} // namespace ceres
351
352#endif // CERES_INTERNAL_LINEAR_SOLVER_H_