Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| 3 | // http://code.google.com/p/ceres-solver/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #ifndef CERES_PUBLIC_SOLVER_H_ |
| 32 | #define CERES_PUBLIC_SOLVER_H_ |
| 33 | |
| 34 | #include <cmath> |
| 35 | #include <string> |
| 36 | #include <vector> |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 37 | #include "ceres/crs_matrix.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 38 | #include "ceres/internal/macros.h" |
| 39 | #include "ceres/internal/port.h" |
Sameer Agarwal | 4997cbc | 2012-07-02 12:44:34 -0700 | [diff] [blame] | 40 | #include "ceres/iteration_callback.h" |
Sameer Agarwal | 2c94eed | 2012-10-01 16:34:37 -0700 | [diff] [blame] | 41 | #include "ceres/ordered_groups.h" |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 42 | #include "ceres/types.h" |
| 43 | |
| 44 | namespace ceres { |
| 45 | |
| 46 | class Problem; |
| 47 | |
| 48 | // Interface for non-linear least squares solvers. |
| 49 | class Solver { |
| 50 | public: |
| 51 | virtual ~Solver(); |
| 52 | |
| 53 | // The options structure contains, not surprisingly, options that control how |
| 54 | // the solver operates. The defaults should be suitable for a wide range of |
| 55 | // problems; however, better performance is often obtainable with tweaking. |
| 56 | // |
| 57 | // The constants are defined inside types.h |
| 58 | struct Options { |
| 59 | // Default constructor that sets up a generic sparse problem. |
| 60 | Options() { |
Sameer Agarwal | f4d0164 | 2012-11-26 12:55:58 -0800 | [diff] [blame] | 61 | minimizer_type = TRUST_REGION; |
Sameer Agarwal | d010de5 | 2013-02-15 14:26:56 -0800 | [diff] [blame] | 62 | line_search_direction_type = LBFGS; |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 63 | line_search_type = WOLFE; |
Sameer Agarwal | f4d0164 | 2012-11-26 12:55:58 -0800 | [diff] [blame] | 64 | nonlinear_conjugate_gradient_type = FLETCHER_REEVES; |
Sameer Agarwal | aed9961 | 2012-11-29 10:33:19 -0800 | [diff] [blame] | 65 | max_lbfgs_rank = 20; |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 66 | use_approximate_eigenvalue_bfgs_scaling = false; |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 67 | line_search_interpolation_type = CUBIC; |
| 68 | min_line_search_step_size = 1e-9; |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 69 | line_search_sufficient_function_decrease = 1e-4; |
| 70 | max_line_search_step_contraction = 1e-3; |
| 71 | min_line_search_step_contraction = 0.6; |
| 72 | max_num_line_search_step_size_iterations = 20; |
| 73 | max_num_line_search_direction_restarts = 5; |
| 74 | line_search_sufficient_curvature_decrease = 0.9; |
| 75 | max_line_search_step_expansion = 10.0; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 76 | trust_region_strategy_type = LEVENBERG_MARQUARDT; |
Markus Moll | 51cf7cb | 2012-08-20 20:10:20 +0200 | [diff] [blame] | 77 | dogleg_type = TRADITIONAL_DOGLEG; |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 78 | use_nonmonotonic_steps = false; |
| 79 | max_consecutive_nonmonotonic_steps = 5; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 80 | max_num_iterations = 50; |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 81 | max_solver_time_in_seconds = 1e9; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 82 | num_threads = 1; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 83 | initial_trust_region_radius = 1e4; |
| 84 | max_trust_region_radius = 1e16; |
| 85 | min_trust_region_radius = 1e-32; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 86 | min_relative_decrease = 1e-3; |
Sameer Agarwal | eeedd2e | 2013-07-07 23:04:31 -0700 | [diff] [blame] | 87 | min_lm_diagonal = 1e-6; |
| 88 | max_lm_diagonal = 1e32; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 89 | max_num_consecutive_invalid_steps = 5; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 90 | function_tolerance = 1e-6; |
| 91 | gradient_tolerance = 1e-10; |
| 92 | parameter_tolerance = 1e-8; |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 93 | |
| 94 | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 95 | linear_solver_type = DENSE_QR; |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 96 | #else |
| 97 | linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 98 | #endif |
| 99 | |
Sameer Agarwal | 97fb6d9 | 2012-06-17 10:08:19 -0700 | [diff] [blame] | 100 | preconditioner_type = JACOBI; |
Sameer Agarwal | f06b9fa | 2013-10-27 21:38:13 -0700 | [diff] [blame] | 101 | visibility_clustering_type = CANONICAL_VIEWS; |
Sameer Agarwal | d61b68a | 2013-08-16 17:02:56 -0700 | [diff] [blame] | 102 | dense_linear_algebra_library_type = EIGEN; |
Sameer Agarwal | 367b65e | 2013-08-09 10:35:37 -0700 | [diff] [blame] | 103 | sparse_linear_algebra_library_type = SUITE_SPARSE; |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 104 | #if defined(CERES_NO_SUITESPARSE) && !defined(CERES_NO_CXSPARSE) |
Sameer Agarwal | 367b65e | 2013-08-09 10:35:37 -0700 | [diff] [blame] | 105 | sparse_linear_algebra_library_type = CX_SPARSE; |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 106 | #endif |
| 107 | |
Sameer Agarwal | d61b68a | 2013-08-16 17:02:56 -0700 | [diff] [blame] | 108 | |
Sameer Agarwal | 97fb6d9 | 2012-06-17 10:08:19 -0700 | [diff] [blame] | 109 | num_linear_solver_threads = 1; |
Sameer Agarwal | 68b32a9 | 2012-10-06 23:10:51 -0700 | [diff] [blame] | 110 | linear_solver_ordering = NULL; |
Sameer Agarwal | 9189f4e | 2013-04-19 17:09:49 -0700 | [diff] [blame] | 111 | use_postordering = false; |
Sameer Agarwal | eeedd2e | 2013-07-07 23:04:31 -0700 | [diff] [blame] | 112 | min_linear_solver_iterations = 1; |
| 113 | max_linear_solver_iterations = 500; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 114 | eta = 1e-1; |
| 115 | jacobi_scaling = true; |
Sameer Agarwal | 0939632 | 2013-05-28 22:29:36 -0700 | [diff] [blame] | 116 | use_inner_iterations = false; |
| 117 | inner_iteration_tolerance = 1e-3; |
| 118 | inner_iteration_ordering = NULL; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 119 | logging_type = PER_MINIMIZER_ITERATION; |
| 120 | minimizer_progress_to_stdout = false; |
Sameer Agarwal | c4a3291 | 2013-06-13 22:00:48 -0700 | [diff] [blame] | 121 | trust_region_problem_dump_directory = "/tmp"; |
| 122 | trust_region_problem_dump_format_type = TEXTFILE; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 123 | check_gradients = false; |
| 124 | gradient_check_relative_precision = 1e-8; |
| 125 | numeric_derivative_relative_step_size = 1e-6; |
| 126 | update_state_every_iteration = false; |
| 127 | } |
| 128 | |
Sameer Agarwal | 65625f7 | 2012-09-17 12:06:57 -0700 | [diff] [blame] | 129 | ~Options(); |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 130 | // Minimizer options ---------------------------------------- |
| 131 | |
Sameer Agarwal | f4d0164 | 2012-11-26 12:55:58 -0800 | [diff] [blame] | 132 | // Ceres supports the two major families of optimization strategies - |
| 133 | // Trust Region and Line Search. |
| 134 | // |
| 135 | // 1. The line search approach first finds a descent direction |
| 136 | // along which the objective function will be reduced and then |
| 137 | // computes a step size that decides how far should move along |
| 138 | // that direction. The descent direction can be computed by |
| 139 | // various methods, such as gradient descent, Newton's method and |
| 140 | // Quasi-Newton method. The step size can be determined either |
| 141 | // exactly or inexactly. |
| 142 | // |
| 143 | // 2. The trust region approach approximates the objective |
| 144 | // function using using a model function (often a quadratic) over |
| 145 | // a subset of the search space known as the trust region. If the |
| 146 | // model function succeeds in minimizing the true objective |
| 147 | // function the trust region is expanded; conversely, otherwise it |
| 148 | // is contracted and the model optimization problem is solved |
| 149 | // again. |
| 150 | // |
| 151 | // Trust region methods are in some sense dual to line search methods: |
| 152 | // trust region methods first choose a step size (the size of the |
| 153 | // trust region) and then a step direction while line search methods |
| 154 | // first choose a step direction and then a step size. |
| 155 | MinimizerType minimizer_type; |
| 156 | |
| 157 | LineSearchDirectionType line_search_direction_type; |
| 158 | LineSearchType line_search_type; |
| 159 | NonlinearConjugateGradientType nonlinear_conjugate_gradient_type; |
| 160 | |
Sameer Agarwal | aed9961 | 2012-11-29 10:33:19 -0800 | [diff] [blame] | 161 | // The LBFGS hessian approximation is a low rank approximation to |
| 162 | // the inverse of the Hessian matrix. The rank of the |
| 163 | // approximation determines (linearly) the space and time |
| 164 | // complexity of using the approximation. Higher the rank, the |
Sameer Agarwal | 2293cb5 | 2012-11-29 16:00:18 -0800 | [diff] [blame] | 165 | // better is the quality of the approximation. The increase in |
| 166 | // quality is however is bounded for a number of reasons. |
| 167 | // |
| 168 | // 1. The method only uses secant information and not actual |
| 169 | // derivatives. |
| 170 | // |
| 171 | // 2. The Hessian approximation is constrained to be positive |
| 172 | // definite. |
| 173 | // |
| 174 | // So increasing this rank to a large number will cost time and |
| 175 | // space complexity without the corresponding increase in solution |
| 176 | // quality. There are no hard and fast rules for choosing the |
| 177 | // maximum rank. The best choice usually requires some problem |
| 178 | // specific experimentation. |
| 179 | // |
| 180 | // For more theoretical and implementation details of the LBFGS |
| 181 | // method, please see: |
Sameer Agarwal | aed9961 | 2012-11-29 10:33:19 -0800 | [diff] [blame] | 182 | // |
| 183 | // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with |
| 184 | // Limited Storage". Mathematics of Computation 35 (151): 773–782. |
| 185 | int max_lbfgs_rank; |
| 186 | |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 187 | // As part of the (L)BFGS update step (BFGS) / right-multiply step (L-BFGS), |
| 188 | // the initial inverse Hessian approximation is taken to be the Identity. |
| 189 | // However, Oren showed that using instead I * \gamma, where \gamma is |
| 190 | // chosen to approximate an eigenvalue of the true inverse Hessian can |
| 191 | // result in improved convergence in a wide variety of cases. Setting |
| 192 | // use_approximate_eigenvalue_bfgs_scaling to true enables this scaling. |
| 193 | // |
| 194 | // It is important to note that approximate eigenvalue scaling does not |
| 195 | // always improve convergence, and that it can in fact significantly degrade |
| 196 | // performance for certain classes of problem, which is why it is disabled |
| 197 | // by default. In particular it can degrade performance when the |
| 198 | // sensitivity of the problem to different parameters varies significantly, |
| 199 | // as in this case a single scalar factor fails to capture this variation |
| 200 | // and detrimentally downscales parts of the jacobian approximation which |
| 201 | // correspond to low-sensitivity parameters. It can also reduce the |
| 202 | // robustness of the solution to errors in the jacobians. |
| 203 | // |
| 204 | // Oren S.S., Self-scaling variable metric (SSVM) algorithms |
| 205 | // Part II: Implementation and experiments, Management Science, |
| 206 | // 20(5), 863-874, 1974. |
| 207 | bool use_approximate_eigenvalue_bfgs_scaling; |
| 208 | |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 209 | // Degree of the polynomial used to approximate the objective |
| 210 | // function. Valid values are BISECTION, QUADRATIC and CUBIC. |
| 211 | // |
| 212 | // BISECTION corresponds to pure backtracking search with no |
| 213 | // interpolation. |
| 214 | LineSearchInterpolationType line_search_interpolation_type; |
| 215 | |
| 216 | // If during the line search, the step_size falls below this |
| 217 | // value, it is truncated to zero. |
| 218 | double min_line_search_step_size; |
| 219 | |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 220 | // Line search parameters. |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 221 | |
| 222 | // Solving the line search problem exactly is computationally |
| 223 | // prohibitive. Fortunately, line search based optimization |
| 224 | // algorithms can still guarantee convergence if instead of an |
| 225 | // exact solution, the line search algorithm returns a solution |
| 226 | // which decreases the value of the objective function |
| 227 | // sufficiently. More precisely, we are looking for a step_size |
| 228 | // s.t. |
| 229 | // |
| 230 | // f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size |
| 231 | // |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 232 | double line_search_sufficient_function_decrease; |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 233 | |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 234 | // In each iteration of the line search, |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 235 | // |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 236 | // new_step_size >= max_line_search_step_contraction * step_size |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 237 | // |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 238 | // Note that by definition, for contraction: |
| 239 | // |
| 240 | // 0 < max_step_contraction < min_step_contraction < 1 |
| 241 | // |
| 242 | double max_line_search_step_contraction; |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 243 | |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 244 | // In each iteration of the line search, |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 245 | // |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 246 | // new_step_size <= min_line_search_step_contraction * step_size |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 247 | // |
Alex Stewart | 9aa0e3c | 2013-07-05 20:22:37 +0100 | [diff] [blame] | 248 | // Note that by definition, for contraction: |
| 249 | // |
| 250 | // 0 < max_step_contraction < min_step_contraction < 1 |
| 251 | // |
| 252 | double min_line_search_step_contraction; |
| 253 | |
| 254 | // Maximum number of trial step size iterations during each line search, |
| 255 | // if a step size satisfying the search conditions cannot be found within |
| 256 | // this number of trials, the line search will terminate. |
| 257 | int max_num_line_search_step_size_iterations; |
| 258 | |
| 259 | // Maximum number of restarts of the line search direction algorithm before |
| 260 | // terminating the optimization. Restarts of the line search direction |
| 261 | // algorithm occur when the current algorithm fails to produce a new descent |
| 262 | // direction. This typically indicates a numerical failure, or a breakdown |
| 263 | // in the validity of the approximations used. |
| 264 | int max_num_line_search_direction_restarts; |
| 265 | |
| 266 | // The strong Wolfe conditions consist of the Armijo sufficient |
| 267 | // decrease condition, and an additional requirement that the |
| 268 | // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe |
| 269 | // conditions) of the gradient along the search direction |
| 270 | // decreases sufficiently. Precisely, this second condition |
| 271 | // is that we seek a step_size s.t. |
| 272 | // |
| 273 | // |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)| |
| 274 | // |
| 275 | // Where f() is the line search objective and f'() is the derivative |
| 276 | // of f w.r.t step_size (d f / d step_size). |
| 277 | double line_search_sufficient_curvature_decrease; |
| 278 | |
| 279 | // During the bracketing phase of the Wolfe search, the step size is |
| 280 | // increased until either a point satisfying the Wolfe conditions is |
| 281 | // found, or an upper bound for a bracket containing a point satisfying |
| 282 | // the conditions is found. Precisely, at each iteration of the |
| 283 | // expansion: |
| 284 | // |
| 285 | // new_step_size <= max_step_expansion * step_size. |
| 286 | // |
| 287 | // By definition for expansion, max_step_expansion > 1.0. |
| 288 | double max_line_search_step_expansion; |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 289 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 290 | TrustRegionStrategyType trust_region_strategy_type; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 291 | |
Markus Moll | 51cf7cb | 2012-08-20 20:10:20 +0200 | [diff] [blame] | 292 | // Type of dogleg strategy to use. |
| 293 | DoglegType dogleg_type; |
| 294 | |
Sameer Agarwal | a8f87d7 | 2012-08-08 10:38:31 -0700 | [diff] [blame] | 295 | // The classical trust region methods are descent methods, in that |
| 296 | // they only accept a point if it strictly reduces the value of |
| 297 | // the objective function. |
| 298 | // |
| 299 | // Relaxing this requirement allows the algorithm to be more |
| 300 | // efficient in the long term at the cost of some local increase |
| 301 | // in the value of the objective function. |
| 302 | // |
| 303 | // This is because allowing for non-decreasing objective function |
| 304 | // values in a princpled manner allows the algorithm to "jump over |
| 305 | // boulders" as the method is not restricted to move into narrow |
| 306 | // valleys while preserving its convergence properties. |
| 307 | // |
| 308 | // Setting use_nonmonotonic_steps to true enables the |
| 309 | // non-monotonic trust region algorithm as described by Conn, |
| 310 | // Gould & Toint in "Trust Region Methods", Section 10.1. |
| 311 | // |
| 312 | // The parameter max_consecutive_nonmonotonic_steps controls the |
| 313 | // window size used by the step selection algorithm to accept |
| 314 | // non-monotonic steps. |
| 315 | // |
| 316 | // Even though the value of the objective function may be larger |
| 317 | // than the minimum value encountered over the course of the |
| 318 | // optimization, the final parameters returned to the user are the |
| 319 | // ones corresponding to the minimum cost over all iterations. |
| 320 | bool use_nonmonotonic_steps; |
| 321 | int max_consecutive_nonmonotonic_steps; |
| 322 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 323 | // Maximum number of iterations for the minimizer to run for. |
| 324 | int max_num_iterations; |
| 325 | |
| 326 | // Maximum time for which the minimizer should run for. |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 327 | double max_solver_time_in_seconds; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 328 | |
| 329 | // Number of threads used by Ceres for evaluating the cost and |
| 330 | // jacobians. |
| 331 | int num_threads; |
| 332 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 333 | // Trust region minimizer settings. |
| 334 | double initial_trust_region_radius; |
| 335 | double max_trust_region_radius; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 336 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 337 | // Minimizer terminates when the trust region radius becomes |
| 338 | // smaller than this value. |
| 339 | double min_trust_region_radius; |
Sameer Agarwal | 835911e | 2012-05-14 12:41:10 -0700 | [diff] [blame] | 340 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 341 | // Lower bound for the relative decrease before a step is |
| 342 | // accepted. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 343 | double min_relative_decrease; |
| 344 | |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 345 | // For the Levenberg-Marquadt algorithm, the scaled diagonal of |
| 346 | // the normal equations J'J is used to control the size of the |
| 347 | // trust region. Extremely small and large values along the |
| 348 | // diagonal can make this regularization scheme |
Sameer Agarwal | eeedd2e | 2013-07-07 23:04:31 -0700 | [diff] [blame] | 349 | // fail. max_lm_diagonal and min_lm_diagonal, clamp the values of |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 350 | // diag(J'J) from above and below. In the normal course of |
| 351 | // operation, the user should not have to modify these parameters. |
Sameer Agarwal | eeedd2e | 2013-07-07 23:04:31 -0700 | [diff] [blame] | 352 | double min_lm_diagonal; |
| 353 | double max_lm_diagonal; |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 354 | |
| 355 | // Sometimes due to numerical conditioning problems or linear |
| 356 | // solver flakiness, the trust region strategy may return a |
| 357 | // numerically invalid step that can be fixed by reducing the |
| 358 | // trust region size. So the TrustRegionMinimizer allows for a few |
| 359 | // successive invalid steps before it declares NUMERICAL_FAILURE. |
| 360 | int max_num_consecutive_invalid_steps; |
| 361 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 362 | // Minimizer terminates when |
| 363 | // |
| 364 | // (new_cost - old_cost) < function_tolerance * old_cost; |
| 365 | // |
| 366 | double function_tolerance; |
| 367 | |
| 368 | // Minimizer terminates when |
| 369 | // |
| 370 | // max_i |gradient_i| < gradient_tolerance * max_i|initial_gradient_i| |
| 371 | // |
| 372 | // This value should typically be 1e-4 * function_tolerance. |
| 373 | double gradient_tolerance; |
| 374 | |
| 375 | // Minimizer terminates when |
| 376 | // |
| 377 | // |step|_2 <= parameter_tolerance * ( |x|_2 + parameter_tolerance) |
| 378 | // |
| 379 | double parameter_tolerance; |
| 380 | |
| 381 | // Linear least squares solver options ------------------------------------- |
| 382 | |
| 383 | LinearSolverType linear_solver_type; |
| 384 | |
| 385 | // Type of preconditioner to use with the iterative linear solvers. |
| 386 | PreconditionerType preconditioner_type; |
| 387 | |
Sameer Agarwal | 9ba0b35 | 2013-11-05 13:04:56 -0800 | [diff] [blame] | 388 | // Type of clustering algorithm to use for visibility based |
Sameer Agarwal | f06b9fa | 2013-10-27 21:38:13 -0700 | [diff] [blame] | 389 | // preconditioning. This option is used only when the |
| 390 | // preconditioner_type is CLUSTER_JACOBI or CLUSTER_TRIDIAGONAL. |
| 391 | VisibilityClusteringType visibility_clustering_type; |
| 392 | |
Sameer Agarwal | 367b65e | 2013-08-09 10:35:37 -0700 | [diff] [blame] | 393 | // Ceres supports using multiple dense linear algebra libraries |
| 394 | // for dense matrix factorizations. Currently EIGEN and LAPACK are |
| 395 | // the valid choices. EIGEN is always available, LAPACK refers to |
| 396 | // the system BLAS + LAPACK library which may or may not be |
| 397 | // available. |
| 398 | // |
| 399 | // This setting affects the DENSE_QR, DENSE_NORMAL_CHOLESKY and |
| 400 | // DENSE_SCHUR solvers. For small to moderate sized probem EIGEN |
| 401 | // is a fine choice but for large problems, an optimized LAPACK + |
| 402 | // BLAS implementation can make a substantial difference in |
| 403 | // performance. |
| 404 | DenseLinearAlgebraLibraryType dense_linear_algebra_library_type; |
Sameer Agarwal | b051873 | 2012-05-29 00:27:57 -0700 | [diff] [blame] | 405 | |
Sameer Agarwal | d61b68a | 2013-08-16 17:02:56 -0700 | [diff] [blame] | 406 | // Ceres supports using multiple sparse linear algebra libraries |
| 407 | // for sparse matrix ordering and factorizations. Currently, |
| 408 | // SUITE_SPARSE and CX_SPARSE are the valid choices, depending on |
| 409 | // whether they are linked into Ceres at build time. |
| 410 | SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type; |
| 411 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 412 | // Number of threads used by Ceres to solve the Newton |
| 413 | // step. Currently only the SPARSE_SCHUR solver is capable of |
| 414 | // using this setting. |
| 415 | int num_linear_solver_threads; |
| 416 | |
Sameer Agarwal | 9123e2f | 2012-09-18 21:49:06 -0700 | [diff] [blame] | 417 | // The order in which variables are eliminated in a linear solver |
| 418 | // can have a significant of impact on the efficiency and accuracy |
| 419 | // of the method. e.g., when doing sparse Cholesky factorization, |
| 420 | // there are matrices for which a good ordering will give a |
| 421 | // Cholesky factor with O(n) storage, where as a bad ordering will |
| 422 | // result in an completely dense factor. |
| 423 | // |
| 424 | // Ceres allows the user to provide varying amounts of hints to |
| 425 | // the solver about the variable elimination ordering to use. This |
| 426 | // can range from no hints, where the solver is free to decide the |
| 427 | // best possible ordering based on the user's choices like the |
| 428 | // linear solver being used, to an exact order in which the |
| 429 | // variables should be eliminated, and a variety of possibilities |
| 430 | // in between. |
| 431 | // |
Sameer Agarwal | 2c94eed | 2012-10-01 16:34:37 -0700 | [diff] [blame] | 432 | // Instances of the ParameterBlockOrdering class are used to |
| 433 | // communicate this information to Ceres. |
Sameer Agarwal | 9123e2f | 2012-09-18 21:49:06 -0700 | [diff] [blame] | 434 | // |
Sameer Agarwal | 2c94eed | 2012-10-01 16:34:37 -0700 | [diff] [blame] | 435 | // Formally an ordering is an ordered partitioning of the |
| 436 | // parameter blocks, i.e, each parameter block belongs to exactly |
| 437 | // one group, and each group has a unique non-negative integer |
| 438 | // associated with it, that determines its order in the set of |
| 439 | // groups. |
Sameer Agarwal | 9123e2f | 2012-09-18 21:49:06 -0700 | [diff] [blame] | 440 | // |
| 441 | // Given such an ordering, Ceres ensures that the parameter blocks in |
| 442 | // the lowest numbered group are eliminated first, and then the |
| 443 | // parmeter blocks in the next lowest numbered group and so on. Within |
| 444 | // each group, Ceres is free to order the parameter blocks as it |
| 445 | // chooses. |
| 446 | // |
Sameer Agarwal | 65625f7 | 2012-09-17 12:06:57 -0700 | [diff] [blame] | 447 | // If NULL, then all parameter blocks are assumed to be in the |
| 448 | // same group and the solver is free to decide the best |
Sameer Agarwal | 2c94eed | 2012-10-01 16:34:37 -0700 | [diff] [blame] | 449 | // ordering. |
| 450 | // |
| 451 | // e.g. Consider the linear system |
| 452 | // |
| 453 | // x + y = 3 |
| 454 | // 2x + 3y = 7 |
| 455 | // |
| 456 | // There are two ways in which it can be solved. First eliminating x |
| 457 | // from the two equations, solving for y and then back substituting |
| 458 | // for x, or first eliminating y, solving for x and back substituting |
| 459 | // for y. The user can construct three orderings here. |
| 460 | // |
| 461 | // {0: x}, {1: y} - eliminate x first. |
| 462 | // {0: y}, {1: x} - eliminate y first. |
| 463 | // {0: x, y} - Solver gets to decide the elimination order. |
| 464 | // |
| 465 | // Thus, to have Ceres determine the ordering automatically using |
| 466 | // heuristics, put all the variables in group 0 and to control the |
| 467 | // ordering for every variable, create groups 0..N-1, one per |
| 468 | // variable, in the desired order. |
| 469 | // |
| 470 | // Bundle Adjustment |
| 471 | // ----------------- |
| 472 | // |
| 473 | // A particular case of interest is bundle adjustment, where the user |
| 474 | // has two options. The default is to not specify an ordering at all, |
| 475 | // the solver will see that the user wants to use a Schur type solver |
| 476 | // and figure out the right elimination ordering. |
| 477 | // |
| 478 | // But if the user already knows what parameter blocks are points and |
| 479 | // what are cameras, they can save preprocessing time by partitioning |
| 480 | // the parameter blocks into two groups, one for the points and one |
| 481 | // for the cameras, where the group containing the points has an id |
| 482 | // smaller than the group containing cameras. |
Sameer Agarwal | ba8d967 | 2012-10-02 00:48:57 -0700 | [diff] [blame] | 483 | // |
| 484 | // Once assigned, Solver::Options owns this pointer and will |
| 485 | // deallocate the memory when destroyed. |
Sameer Agarwal | 68b32a9 | 2012-10-06 23:10:51 -0700 | [diff] [blame] | 486 | ParameterBlockOrdering* linear_solver_ordering; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 487 | |
Sameer Agarwal | 9189f4e | 2013-04-19 17:09:49 -0700 | [diff] [blame] | 488 | // Sparse Cholesky factorization algorithms use a fill-reducing |
| 489 | // ordering to permute the columns of the Jacobian matrix. There |
| 490 | // are two ways of doing this. |
| 491 | |
| 492 | // 1. Compute the Jacobian matrix in some order and then have the |
| 493 | // factorization algorithm permute the columns of the Jacobian. |
| 494 | |
| 495 | // 2. Compute the Jacobian with its columns already permuted. |
| 496 | |
| 497 | // The first option incurs a significant memory penalty. The |
| 498 | // factorization algorithm has to make a copy of the permuted |
| 499 | // Jacobian matrix, thus Ceres pre-permutes the columns of the |
| 500 | // Jacobian matrix and generally speaking, there is no performance |
| 501 | // penalty for doing so. |
| 502 | |
| 503 | // In some rare cases, it is worth using a more complicated |
| 504 | // reordering algorithm which has slightly better runtime |
| 505 | // performance at the expense of an extra copy of the Jacobian |
Sameer Agarwal | cbdeb79 | 2013-04-22 10:18:18 -0700 | [diff] [blame] | 506 | // matrix. Setting use_postordering to true enables this tradeoff. |
Sameer Agarwal | 9189f4e | 2013-04-19 17:09:49 -0700 | [diff] [blame] | 507 | bool use_postordering; |
Sameer Agarwal | ba8d967 | 2012-10-02 00:48:57 -0700 | [diff] [blame] | 508 | |
Sameer Agarwal | 9123e2f | 2012-09-18 21:49:06 -0700 | [diff] [blame] | 509 | // Some non-linear least squares problems have additional |
| 510 | // structure in the way the parameter blocks interact that it is |
| 511 | // beneficial to modify the way the trust region step is computed. |
| 512 | // |
| 513 | // e.g., consider the following regression problem |
| 514 | // |
| 515 | // y = a_1 exp(b_1 x) + a_2 exp(b_3 x^2 + c_1) |
| 516 | // |
| 517 | // Given a set of pairs{(x_i, y_i)}, the user wishes to estimate |
| 518 | // a_1, a_2, b_1, b_2, and c_1. |
| 519 | // |
| 520 | // Notice here that the expression on the left is linear in a_1 |
| 521 | // and a_2, and given any value for b_1, b_2 and c_1, it is |
| 522 | // possible to use linear regression to estimate the optimal |
| 523 | // values of a_1 and a_2. Indeed, its possible to analytically |
| 524 | // eliminate the variables a_1 and a_2 from the problem all |
| 525 | // together. Problems like these are known as separable least |
| 526 | // squares problem and the most famous algorithm for solving them |
| 527 | // is the Variable Projection algorithm invented by Golub & |
| 528 | // Pereyra. |
| 529 | // |
| 530 | // Similar structure can be found in the matrix factorization with |
| 531 | // missing data problem. There the corresponding algorithm is |
| 532 | // known as Wiberg's algorithm. |
| 533 | // |
| 534 | // Ruhe & Wedin (Algorithms for Separable Nonlinear Least Squares |
| 535 | // Problems, SIAM Reviews, 22(3), 1980) present an analyis of |
| 536 | // various algorithms for solving separable non-linear least |
| 537 | // squares problems and refer to "Variable Projection" as |
| 538 | // Algorithm I in their paper. |
| 539 | // |
| 540 | // Implementing Variable Projection is tedious and expensive, and |
| 541 | // they present a simpler algorithm, which they refer to as |
| 542 | // Algorithm II, where once the Newton/Trust Region step has been |
| 543 | // computed for the whole problem (a_1, a_2, b_1, b_2, c_1) and |
| 544 | // additional optimization step is performed to estimate a_1 and |
| 545 | // a_2 exactly. |
| 546 | // |
| 547 | // This idea can be generalized to cases where the residual is not |
| 548 | // linear in a_1 and a_2, i.e., Solve for the trust region step |
| 549 | // for the full problem, and then use it as the starting point to |
| 550 | // further optimize just a_1 and a_2. For the linear case, this |
| 551 | // amounts to doing a single linear least squares solve. For |
| 552 | // non-linear problems, any method for solving the a_1 and a_2 |
| 553 | // optimization problems will do. The only constraint on a_1 and |
| 554 | // a_2 is that they do not co-occur in any residual block. |
| 555 | // |
Sameer Agarwal | ba8d967 | 2012-10-02 00:48:57 -0700 | [diff] [blame] | 556 | // This idea can be further generalized, by not just optimizing |
| 557 | // (a_1, a_2), but decomposing the graph corresponding to the |
| 558 | // Hessian matrix's sparsity structure in a collection of |
| 559 | // non-overlapping independent sets and optimizing each of them. |
| 560 | // |
Sameer Agarwal | 9123e2f | 2012-09-18 21:49:06 -0700 | [diff] [blame] | 561 | // Setting "use_inner_iterations" to true enables the use of this |
| 562 | // non-linear generalization of Ruhe & Wedin's Algorithm II. This |
| 563 | // version of Ceres has a higher iteration complexity, but also |
Sameer Agarwal | ba8d967 | 2012-10-02 00:48:57 -0700 | [diff] [blame] | 564 | // displays better convergence behaviour per iteration. Setting |
| 565 | // Solver::Options::num_threads to the maximum number possible is |
| 566 | // highly recommended. |
Sameer Agarwal | 9123e2f | 2012-09-18 21:49:06 -0700 | [diff] [blame] | 567 | bool use_inner_iterations; |
| 568 | |
| 569 | // If inner_iterations is true, then the user has two choices. |
| 570 | // |
Sameer Agarwal | ba8d967 | 2012-10-02 00:48:57 -0700 | [diff] [blame] | 571 | // 1. Let the solver heuristically decide which parameter blocks |
| 572 | // to optimize in each inner iteration. To do this leave |
| 573 | // Solver::Options::inner_iteration_ordering untouched. |
Sameer Agarwal | 9123e2f | 2012-09-18 21:49:06 -0700 | [diff] [blame] | 574 | // |
Sameer Agarwal | ba8d967 | 2012-10-02 00:48:57 -0700 | [diff] [blame] | 575 | // 2. Specify a collection of of ordered independent sets. Where |
| 576 | // the lower numbered groups are optimized before the higher |
Sameer Agarwal | 0939632 | 2013-05-28 22:29:36 -0700 | [diff] [blame] | 577 | // number groups. Each group must be an independent set. Not |
| 578 | // all parameter blocks need to be present in the ordering. |
Sameer Agarwal | ba8d967 | 2012-10-02 00:48:57 -0700 | [diff] [blame] | 579 | ParameterBlockOrdering* inner_iteration_ordering; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 580 | |
Sameer Agarwal | d4cb94b | 2013-05-22 09:13:27 -0700 | [diff] [blame] | 581 | // Generally speaking, inner iterations make significant progress |
| 582 | // in the early stages of the solve and then their contribution |
| 583 | // drops down sharply, at which point the time spent doing inner |
| 584 | // iterations is not worth it. |
| 585 | // |
Sameer Agarwal | 0939632 | 2013-05-28 22:29:36 -0700 | [diff] [blame] | 586 | // Once the relative decrease in the objective function due to |
| 587 | // inner iterations drops below inner_iteration_tolerance, the use |
| 588 | // of inner iterations in subsequent trust region minimizer |
| 589 | // iterations is disabled. |
Sameer Agarwal | d4cb94b | 2013-05-22 09:13:27 -0700 | [diff] [blame] | 590 | double inner_iteration_tolerance; |
| 591 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 592 | // Minimum number of iterations for which the linear solver should |
| 593 | // run, even if the convergence criterion is satisfied. |
Sameer Agarwal | eeedd2e | 2013-07-07 23:04:31 -0700 | [diff] [blame] | 594 | int min_linear_solver_iterations; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 595 | |
| 596 | // Maximum number of iterations for which the linear solver should |
| 597 | // run. If the solver does not converge in less than |
Sameer Agarwal | eeedd2e | 2013-07-07 23:04:31 -0700 | [diff] [blame] | 598 | // max_linear_solver_iterations, then it returns MAX_ITERATIONS, |
| 599 | // as its termination type. |
| 600 | int max_linear_solver_iterations; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 601 | |
| 602 | // Forcing sequence parameter. The truncated Newton solver uses |
| 603 | // this number to control the relative accuracy with which the |
| 604 | // Newton step is computed. |
| 605 | // |
| 606 | // This constant is passed to ConjugateGradientsSolver which uses |
| 607 | // it to terminate the iterations when |
| 608 | // |
| 609 | // (Q_i - Q_{i-1})/Q_i < eta/i |
| 610 | double eta; |
| 611 | |
| 612 | // Normalize the jacobian using Jacobi scaling before calling |
| 613 | // the linear least squares solver. |
| 614 | bool jacobi_scaling; |
| 615 | |
| 616 | // Logging options --------------------------------------------------------- |
| 617 | |
| 618 | LoggingType logging_type; |
| 619 | |
| 620 | // By default the Minimizer progress is logged to VLOG(1), which |
| 621 | // is sent to STDERR depending on the vlog level. If this flag is |
| 622 | // set to true, and logging_type is not SILENT, the logging output |
| 623 | // is sent to STDOUT. |
| 624 | bool minimizer_progress_to_stdout; |
| 625 | |
Sameer Agarwal | c4a3291 | 2013-06-13 22:00:48 -0700 | [diff] [blame] | 626 | // List of iterations at which the minimizer should dump the trust |
| 627 | // region problem. Useful for testing and benchmarking. If empty |
| 628 | // (default), no problems are dumped. |
| 629 | vector<int> trust_region_minimizer_iterations_to_dump; |
| 630 | |
| 631 | // Directory to which the problems should be written to. Should be |
| 632 | // non-empty if trust_region_minimizer_iterations_to_dump is |
| 633 | // non-empty and trust_region_problem_dump_format_type is not |
| 634 | // CONSOLE. |
| 635 | string trust_region_problem_dump_directory; |
| 636 | DumpFormatType trust_region_problem_dump_format_type; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 637 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 638 | // Finite differences options ---------------------------------------------- |
| 639 | |
| 640 | // Check all jacobians computed by each residual block with finite |
| 641 | // differences. This is expensive since it involves computing the |
| 642 | // derivative by normal means (e.g. user specified, autodiff, |
| 643 | // etc), then also computing it using finite differences. The |
| 644 | // results are compared, and if they differ substantially, details |
| 645 | // are printed to the log. |
| 646 | bool check_gradients; |
| 647 | |
| 648 | // Relative precision to check for in the gradient checker. If the |
| 649 | // relative difference between an element in a jacobian exceeds |
| 650 | // this number, then the jacobian for that cost term is dumped. |
| 651 | double gradient_check_relative_precision; |
| 652 | |
| 653 | // Relative shift used for taking numeric derivatives. For finite |
| 654 | // differencing, each dimension is evaluated at slightly shifted |
| 655 | // values; for the case of central difference, this is what gets |
| 656 | // evaluated: |
| 657 | // |
| 658 | // delta = numeric_derivative_relative_step_size; |
| 659 | // f_initial = f(x) |
| 660 | // f_forward = f((1 + delta) * x) |
| 661 | // f_backward = f((1 - delta) * x) |
| 662 | // |
| 663 | // The finite differencing is done along each dimension. The |
| 664 | // reason to use a relative (rather than absolute) step size is |
| 665 | // that this way, numeric differentation works for functions where |
| 666 | // the arguments are typically large (e.g. 1e9) and when the |
| 667 | // values are small (e.g. 1e-5). It is possible to construct |
| 668 | // "torture cases" which break this finite difference heuristic, |
| 669 | // but they do not come up often in practice. |
| 670 | // |
| 671 | // TODO(keir): Pick a smarter number than the default above! In |
| 672 | // theory a good choice is sqrt(eps) * x, which for doubles means |
| 673 | // about 1e-8 * x. However, I have found this number too |
| 674 | // optimistic. This number should be exposed for users to change. |
| 675 | double numeric_derivative_relative_step_size; |
| 676 | |
| 677 | // If true, the user's parameter blocks are updated at the end of |
| 678 | // every Minimizer iteration, otherwise they are updated when the |
| 679 | // Minimizer terminates. This is useful if, for example, the user |
| 680 | // wishes to visualize the state of the optimization every |
| 681 | // iteration. |
| 682 | bool update_state_every_iteration; |
| 683 | |
| 684 | // Callbacks that are executed at the end of each iteration of the |
Sameer Agarwal | aa9a83c | 2012-05-29 17:40:17 -0700 | [diff] [blame] | 685 | // Minimizer. An iteration may terminate midway, either due to |
| 686 | // numerical failures or because one of the convergence tests has |
| 687 | // been satisfied. In this case none of the callbacks are |
| 688 | // executed. |
| 689 | |
| 690 | // Callbacks are executed in the order that they are specified in |
| 691 | // this vector. By default, parameter blocks are updated only at |
| 692 | // the end of the optimization, i.e when the Minimizer |
| 693 | // terminates. This behaviour is controlled by |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 694 | // update_state_every_variable. If the user wishes to have access |
| 695 | // to the update parameter blocks when his/her callbacks are |
| 696 | // executed, then set update_state_every_iteration to true. |
| 697 | // |
| 698 | // The solver does NOT take ownership of these pointers. |
| 699 | vector<IterationCallback*> callbacks; |
Sameer Agarwal | 1b7f3b5 | 2012-08-09 21:46:19 -0700 | [diff] [blame] | 700 | |
| 701 | // If non-empty, a summary of the execution of the solver is |
| 702 | // recorded to this file. |
| 703 | string solver_log; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 704 | }; |
| 705 | |
| 706 | struct Summary { |
| 707 | Summary(); |
| 708 | |
| 709 | // A brief one line description of the state of the solver after |
| 710 | // termination. |
| 711 | string BriefReport() const; |
| 712 | |
| 713 | // A full multiline description of the state of the solver after |
| 714 | // termination. |
| 715 | string FullReport() const; |
| 716 | |
| 717 | // Minimizer summary ------------------------------------------------- |
Sameer Agarwal | d010de5 | 2013-02-15 14:26:56 -0800 | [diff] [blame] | 718 | MinimizerType minimizer_type; |
| 719 | |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 720 | SolverTerminationType termination_type; |
| 721 | |
| 722 | // If the solver did not run, or there was a failure, a |
| 723 | // description of the error. |
| 724 | string error; |
| 725 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 726 | // Cost of the problem (value of the objective function) before |
| 727 | // the optimization. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 728 | double initial_cost; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 729 | |
| 730 | // Cost of the problem (value of the objective function) after the |
| 731 | // optimization. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 732 | double final_cost; |
| 733 | |
| 734 | // The part of the total cost that comes from residual blocks that |
| 735 | // were held fixed by the preprocessor because all the parameter |
| 736 | // blocks that they depend on were fixed. |
| 737 | double fixed_cost; |
| 738 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 739 | // IterationSummary for each minimizer iteration in order. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 740 | vector<IterationSummary> iterations; |
| 741 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 742 | // Number of minimizer iterations in which the step was |
| 743 | // accepted. Unless use_non_monotonic_steps is true this is also |
| 744 | // the number of steps in which the objective function value/cost |
| 745 | // went down. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 746 | int num_successful_steps; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 747 | |
| 748 | // Number of minimizer iterations in which the step was rejected |
| 749 | // either because it did not reduce the cost enough or the step |
| 750 | // was not numerically valid. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 751 | int num_unsuccessful_steps; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 752 | |
| 753 | // Number of times inner iterations were performed. |
Sameer Agarwal | 9f9488b | 2013-05-23 09:40:40 -0700 | [diff] [blame] | 754 | int num_inner_iteration_steps; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 755 | |
Sameer Agarwal | f0b071b | 2013-05-31 13:22:51 -0700 | [diff] [blame] | 756 | // All times reported below are wall times. |
| 757 | |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 758 | // When the user calls Solve, before the actual optimization |
| 759 | // occurs, Ceres performs a number of preprocessing steps. These |
| 760 | // include error checks, memory allocations, and reorderings. This |
| 761 | // time is accounted for as preprocessing time. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 762 | double preprocessor_time_in_seconds; |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 763 | |
| 764 | // Time spent in the TrustRegionMinimizer. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 765 | double minimizer_time_in_seconds; |
Sameer Agarwal | fa01519 | 2012-06-11 14:21:42 -0700 | [diff] [blame] | 766 | |
| 767 | // After the Minimizer is finished, some time is spent in |
| 768 | // re-evaluating residuals etc. This time is accounted for in the |
| 769 | // postprocessor time. |
| 770 | double postprocessor_time_in_seconds; |
| 771 | |
| 772 | // Some total of all time spent inside Ceres when Solve is called. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 773 | double total_time_in_seconds; |
| 774 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 775 | // Time (in seconds) spent in the linear solver computing the |
| 776 | // trust region step. |
Sameer Agarwal | 42a84b8 | 2013-02-01 12:22:53 -0800 | [diff] [blame] | 777 | double linear_solver_time_in_seconds; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 778 | |
| 779 | // Time (in seconds) spent evaluating the residual vector. |
Sameer Agarwal | 42a84b8 | 2013-02-01 12:22:53 -0800 | [diff] [blame] | 780 | double residual_evaluation_time_in_seconds; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 781 | |
| 782 | // Time (in seconds) spent evaluating the jacobian matrix. |
Sameer Agarwal | 42a84b8 | 2013-02-01 12:22:53 -0800 | [diff] [blame] | 783 | double jacobian_evaluation_time_in_seconds; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 784 | |
| 785 | // Time (in seconds) spent doing inner iterations. |
Sameer Agarwal | 9f9488b | 2013-05-23 09:40:40 -0700 | [diff] [blame] | 786 | double inner_iteration_time_in_seconds; |
Sameer Agarwal | 42a84b8 | 2013-02-01 12:22:53 -0800 | [diff] [blame] | 787 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 788 | // Number of parameter blocks in the problem. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 789 | int num_parameter_blocks; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 790 | |
| 791 | // Number of parameters in the probem. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 792 | int num_parameters; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 793 | |
| 794 | // Dimension of the tangent space of the problem (or the number of |
| 795 | // columns in the Jacobian for the problem). This is different |
| 796 | // from num_parameters if a parameter block is associated with a |
| 797 | // LocalParameterization |
Keir Mierle | ba94421 | 2013-02-25 12:46:44 -0800 | [diff] [blame] | 798 | int num_effective_parameters; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 799 | |
| 800 | // Number of residual blocks in the problem. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 801 | int num_residual_blocks; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 802 | |
| 803 | // Number of residuals in the problem. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 804 | int num_residuals; |
| 805 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 806 | // Number of parameter blocks in the problem after the inactive |
| 807 | // and constant parameter blocks have been removed. A parameter |
| 808 | // block is inactive if no residual block refers to it. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 809 | int num_parameter_blocks_reduced; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 810 | |
| 811 | // Number of parameters in the reduced problem. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 812 | int num_parameters_reduced; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 813 | |
| 814 | // Dimension of the tangent space of the reduced problem (or the |
| 815 | // number of columns in the Jacobian for the reduced |
| 816 | // problem). This is different from num_parameters_reduced if a |
| 817 | // parameter block in the reduced problem is associated with a |
| 818 | // LocalParameterization. |
Keir Mierle | ba94421 | 2013-02-25 12:46:44 -0800 | [diff] [blame] | 819 | int num_effective_parameters_reduced; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 820 | |
| 821 | // Number of residual blocks in the reduced problem. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 822 | int num_residual_blocks_reduced; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 823 | |
| 824 | // Number of residuals in the reduced problem. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 825 | int num_residuals_reduced; |
| 826 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 827 | // Number of threads specified by the user for Jacobian and |
| 828 | // residual evaluation. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 829 | int num_threads_given; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 830 | |
| 831 | // Number of threads actually used by the solver for Jacobian and |
| 832 | // residual evaluation. This number is not equal to |
| 833 | // num_threads_given if OpenMP is not available. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 834 | int num_threads_used; |
| 835 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 836 | // Number of threads specified by the user for solving the trust |
| 837 | // region problem. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 838 | int num_linear_solver_threads_given; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 839 | |
| 840 | // Number of threads actually used by the solver for solving the |
| 841 | // trust region problem. This number is not equal to |
| 842 | // num_threads_given if OpenMP is not available. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 843 | int num_linear_solver_threads_used; |
| 844 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 845 | // Type of the linear solver requested by the user. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 846 | LinearSolverType linear_solver_type_given; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 847 | |
| 848 | // Type of the linear solver actually used. This may be different |
| 849 | // from linear_solver_type_given if Ceres determines that the |
| 850 | // problem structure is not compatible with the linear solver |
| 851 | // requested or if the linear solver requested by the user is not |
| 852 | // available, e.g. The user requested SPARSE_NORMAL_CHOLESKY but |
| 853 | // no sparse linear algebra library was available. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 854 | LinearSolverType linear_solver_type_used; |
| 855 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 856 | // Size of the elimination groups given by the user as hints to |
| 857 | // the linear solver. |
Sameer Agarwal | 977be7c | 2013-01-26 16:01:54 -0800 | [diff] [blame] | 858 | vector<int> linear_solver_ordering_given; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 859 | |
| 860 | // Size of the parameter groups used by the solver when ordering |
| 861 | // the columns of the Jacobian. This maybe different from |
| 862 | // linear_solver_ordering_given if the user left |
| 863 | // linear_solver_ordering_given blank and asked for an automatic |
| 864 | // ordering, or if the problem contains some constant or inactive |
| 865 | // parameter blocks. |
Sameer Agarwal | 977be7c | 2013-01-26 16:01:54 -0800 | [diff] [blame] | 866 | vector<int> linear_solver_ordering_used; |
| 867 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 868 | // True if the user asked for inner iterations to be used as part |
| 869 | // of the optimization. |
Sameer Agarwal | 9f9488b | 2013-05-23 09:40:40 -0700 | [diff] [blame] | 870 | bool inner_iterations_given; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 871 | |
| 872 | // True if the user asked for inner iterations to be used as part |
| 873 | // of the optimization and the problem structure was such that |
| 874 | // they were actually performed. e.g., in a problem with just one |
| 875 | // parameter block, inner iterations are not performed. |
Sameer Agarwal | 9f9488b | 2013-05-23 09:40:40 -0700 | [diff] [blame] | 876 | bool inner_iterations_used; |
| 877 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 878 | // Size of the parameter groups given by the user for performing |
| 879 | // inner iterations. |
Sameer Agarwal | 9f9488b | 2013-05-23 09:40:40 -0700 | [diff] [blame] | 880 | vector<int> inner_iteration_ordering_given; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 881 | |
| 882 | // Size of the parameter groups given used by the solver for |
| 883 | // performing inner iterations. This maybe different from |
| 884 | // inner_iteration_ordering_given if the user left |
| 885 | // inner_iteration_ordering_given blank and asked for an automatic |
| 886 | // ordering, or if the problem contains some constant or inactive |
| 887 | // parameter blocks. |
Sameer Agarwal | 9f9488b | 2013-05-23 09:40:40 -0700 | [diff] [blame] | 888 | vector<int> inner_iteration_ordering_used; |
| 889 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 890 | // Type of preconditioner used for solving the trust region |
| 891 | // step. Only meaningful when an iterative linear solver is used. |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 892 | PreconditionerType preconditioner_type; |
Sameer Agarwal | 97fb6d9 | 2012-06-17 10:08:19 -0700 | [diff] [blame] | 893 | |
Sameer Agarwal | f06b9fa | 2013-10-27 21:38:13 -0700 | [diff] [blame] | 894 | // Type of clustering algorithm used for visibility based |
| 895 | // preconditioning. Only meaningful when the preconditioner_type |
| 896 | // is CLUSTER_JACOBI or CLUSTER_TRIDIAGONAL. |
| 897 | VisibilityClusteringType visibility_clustering_type; |
| 898 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 899 | // Type of trust region strategy. |
Sameer Agarwal | 97fb6d9 | 2012-06-17 10:08:19 -0700 | [diff] [blame] | 900 | TrustRegionStrategyType trust_region_strategy_type; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 901 | |
| 902 | // Type of dogleg strategy used for solving the trust region |
| 903 | // problem. |
Sameer Agarwal | 1e28920 | 2012-08-21 18:00:54 -0700 | [diff] [blame] | 904 | DoglegType dogleg_type; |
Sameer Agarwal | d010de5 | 2013-02-15 14:26:56 -0800 | [diff] [blame] | 905 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 906 | // Type of the dense linear algebra library used. |
Sameer Agarwal | 367b65e | 2013-08-09 10:35:37 -0700 | [diff] [blame] | 907 | DenseLinearAlgebraLibraryType dense_linear_algebra_library_type; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 908 | |
| 909 | // Type of the sparse linear algebra library used. |
Sameer Agarwal | 367b65e | 2013-08-09 10:35:37 -0700 | [diff] [blame] | 910 | SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type; |
Sameer Agarwal | 977be7c | 2013-01-26 16:01:54 -0800 | [diff] [blame] | 911 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 912 | // Type of line search direction used. |
Sameer Agarwal | d010de5 | 2013-02-15 14:26:56 -0800 | [diff] [blame] | 913 | LineSearchDirectionType line_search_direction_type; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 914 | |
| 915 | // Type of the line search algorithm used. |
Sameer Agarwal | d010de5 | 2013-02-15 14:26:56 -0800 | [diff] [blame] | 916 | LineSearchType line_search_type; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 917 | |
| 918 | // When performing line search, the degree of the polynomial used |
| 919 | // to approximate the objective function. |
Sameer Agarwal | 4f010b2 | 2013-07-01 08:01:01 -0700 | [diff] [blame] | 920 | LineSearchInterpolationType line_search_interpolation_type; |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 921 | |
| 922 | // If the line search direction is NONLINEAR_CONJUGATE_GRADIENT, |
| 923 | // then this indicates the particular variant of non-linear |
| 924 | // conjugate gradient used. |
Sameer Agarwal | 67ccb73 | 2013-07-03 06:28:34 -0700 | [diff] [blame] | 925 | NonlinearConjugateGradientType nonlinear_conjugate_gradient_type; |
Sameer Agarwal | 0924401 | 2013-06-30 14:33:23 -0700 | [diff] [blame] | 926 | |
Sameer Agarwal | 4ad80b7 | 2013-10-21 05:33:34 -0700 | [diff] [blame] | 927 | // If the type of the line search direction is LBFGS, then this |
| 928 | // indicates the rank of the Hessian approximation. |
Sameer Agarwal | d010de5 | 2013-02-15 14:26:56 -0800 | [diff] [blame] | 929 | int max_lbfgs_rank; |
Keir Mierle | 8ebb073 | 2012-04-30 23:09:08 -0700 | [diff] [blame] | 930 | }; |
| 931 | |
| 932 | // Once a least squares problem has been built, this function takes |
| 933 | // the problem and optimizes it based on the values of the options |
| 934 | // parameters. Upon return, a detailed summary of the work performed |
| 935 | // by the preprocessor, the non-linear minmizer and the linear |
| 936 | // solver are reported in the summary object. |
| 937 | virtual void Solve(const Options& options, |
| 938 | Problem* problem, |
| 939 | Solver::Summary* summary); |
| 940 | }; |
| 941 | |
| 942 | // Helper function which avoids going through the interface. |
| 943 | void Solve(const Solver::Options& options, |
| 944 | Problem* problem, |
| 945 | Solver::Summary* summary); |
| 946 | |
| 947 | } // namespace ceres |
| 948 | |
| 949 | #endif // CERES_PUBLIC_SOLVER_H_ |